1.

Record Nr.

UNINA9910877478103321

Autore

Yu Hang Z

Titolo

Solid-State Metal Additive Manufacturing : Physics, Processes, Mechanical Properties, and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

9783527839353

3527839356

9783527839339

352783933X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (411 pages)

Altri autori (Persone)

TuncerNihan

FengZhili

Disciplina

621.988

Soggetti

Additive manufacturing

Metals

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Introduction and Overview -- 1.1 Overview and History of Metal Additive Manufacturing -- 1.2 Liquid‐State Bonding Versus Solid‐State Bonding -- 1.2.1 Liquid‐State Bonding -- 1.2.2 Solid‐State Bonding -- 1.3 Nonbeam‐Based, Solid‐State Metal Additive Manufacturing -- 1.3.1 Deformation‐Based Metal Additive Manufacturing -- 1.3.2 Sintering‐Based Metal Additive Manufacturing -- 1.4 Additive Manufacturing Categorization Based on the Relationship Between Shape Forming and Consolidation -- 1.5 Organization of the Book -- References -- Part II Cold Spray Additive Manufacturing -- Chapter 2 Impact‐Induced Bonding: Physical Processes and Bonding Mechanisms -- 2.1 Introduction -- 2.2 Fundamentals of Impact Bonding -- 2.2.1 Plate Impacts and Explosive Welding -- 2.2.1.1 The Shock Equations of State -- 2.2.1.2 Limiting Conditions for Explosive Welding -- 2.2.2 Laser Impact Bonding -- 2.3 Bonding Mechanisms in Cold Spray -- 2.3.1 Proposed Mechanisms -- 2.3.1.1 The Role of Jetting and Impact Pressure in Particle Bonding -- 2.3.1.2 The Limiting



Case of Impact Melting -- 2.3.1.3 Adiabatic Shear Instability -- 2.3.1.4 Dissimilar Materials Impact -- 2.3.2 Influence of Particle Characteristics -- 2.3.2.1 Particle Temperature -- 2.3.2.2 Particle Size -- 2.3.2.3 Surface Oxide and Hydroxide Effects -- References -- Chapter 3 Microstructures and Microstructural Evolution in Cold‐Sprayed Materials -- 3.1 Introduction -- 3.2 Defect Structures -- 3.2.1 Vacancies -- 3.2.2 Dislocation Structure -- 3.2.3 Grain Structure -- 3.2.4 Precipitate Structure -- 3.2.5 Porosity -- 3.3 Microstructural Evolution of Thermally Treated Cold‐Sprayed Materials -- 3.3.1 Recovery, Recrystallization, and Grain Growth -- 3.3.2 Precipitation.

3.3.3 Heat Treatment of Feedstock Powders and its Impact on Microstructure -- 3.4 Conclusions -- Acknowledgements -- References -- Chapter 4 Mechanical Properties of Cold Spray Deposits -- 4.1 Introduction -- 4.2 Mechanical Properties -- 4.2.1 Adhesive Strength -- 4.2.1.1 Adhesive Strength Test Methods -- 4.2.1.2 The Effect of Process Parameters on Adhesive Strength -- 4.2.1.3 The effect of Pre‐/Post‐treatments on Adhesive Strength -- 4.2.2 Cohesive Strength -- 4.2.2.1 Cohesive Strength Test methods -- 4.2.2.2 Cohesive Strength Under Static Loading -- 4.2.2.3 Cohesive Strength Under Fatigue Loading -- 4.2.2.4 Anisotropy in Cohesive Strength -- 4.2.3 Summary and Future Perspectives -- References -- Chapter 5 Cold Spray in Practical and Potential Applications -- 5.1 Introduction -- 5.1.1 The Cold Spray Process -- 5.1.2 Cold Spray Additive Manufacturing (CSAM) -- 5.2 Materials -- 5.2.1 Cu and Cu Alloys -- 5.2.1.1 2Cu-Ga and Cu-In-Ga -- 5.2.1.2 Cu-Sn -- 5.2.1.3 Cu-W -- 5.2.2 Al and Al Alloys -- 5.2.3 Ni and Ni Alloys -- 5.2.4 Stainless Steels -- 5.2.5 Body Center Cubic (BCC) Metals -- 5.2.5.1 Tantalum -- 5.2.5.2 Niobium -- 5.2.6 Hexagonal Close‐Packed (HCP) Metals -- 5.2.6.1 Titanium -- 5.2.6.2 Magnesium -- 5.2.7 Metal Mixes and Metal Matrix Composite (MMC) -- 5.2.7.1 Metal Mixes -- 5.2.7.2 Metal Matrix Composite -- 5.2.8 Multicomponent and High Entropy Alloys -- 5.2.8.1 MCrAlY Multicomponent Alloy -- 5.2.8.2 High Entropy Alloy (HEA) -- 5.2.9 Multimaterials -- 5.3 Perspective and Challenges -- References -- Part III Additive Friction Stir Deposition -- Chapter 6 Process Fundamentals of Additive Friction Stir Deposition -- 6.1 Additive Friction Stir Deposition - Macroscopic Process Overview -- 6.2 Thermo‐Mechanical Processing Evolution -- 6.3 Heat Generation and Heat Transfer -- 6.3.1 Heat Generation and Heat Transfer Mechanisms.

6.3.2 Peak Temperature and Material Dependence -- 6.4 Material Flow and Deformation -- References -- Chapter 7 Dynamic Microstructure Evolution in Additive Friction Stir Deposition -- 7.1 Introduction to Microstructure Evolution in Additive Friction Stir Deposition -- 7.2 Dynamic Microstructure Evolution in Single‐Phase Materials -- 7.2.1 Stacking Fault Energy and Dislocation Mobility -- 7.2.2 Dynamic Recovery -- 7.2.3 Continuous Dynamic Recrystallization -- 7.2.4 Discontinuous Dynamic Recrystallization -- 7.2.5 Static and Post‐Dynamic Recrystallization -- 7.2.6 Heterogeneous Deposits and Metadynamic Recrystallization -- 7.3 Dynamic Microstructure Evolution in Multiple‐Phase Materials -- 7.3.1 Thermal Evolution During Additive Friction Stir Deposition -- 7.3.2 Evolution of Secondary Phases at Low Temperature -- 7.3.3 Evolution of Secondary Phases at High Temperature -- 7.3.4 Evolution of Secondary Phases After Deformation -- 7.3.5 Mapping Secondary Phase Evolution to Processing Space -- 7.4 Effects of Material Transport on Microstructure Evolution -- 7.4.1 Mechanisms of Material Transport -- 7.4.2 Material Transport for the Homogenization of Mixtures -- 7.4.3 Densification of Material Through Material Transport -- 7.4.4 Material Transport and Spatial Variance in Thermomechanical Conditions -- 7.5 The Study of Microstructure



Evolution in Additive Friction Stir Deposition -- 7.5.1 Contemporary Approaches -- 7.5.2 Novel Approaches -- Acknowledgement -- References -- Chapter 8 Mechanical Properties of Additive Friction Stir Deposits -- 8.1 Introduction -- 8.2 Magnesium‐Based Alloys -- 8.2.1 WE43 -- 8.2.2 AZ31 -- 8.3 Aluminum‐Based Alloys -- 8.3.1 5xxx -- 8.3.2 2xxx -- 8.3.3 6xxx -- 8.3.4 7xxx -- 8.3.5 Cast Al Alloys -- 8.4 Other Alloys Systems -- 8.4.1 Nickel‐Based Alloys -- 8.4.2 Copper‐Based Alloys -- 8.4.3 Titanium‐Based Alloys -- 8.4.4 Steel Alloys.

8.4.5 High‐Entropy Alloys -- 8.4.6 Metal Matrix Composites -- 8.5 Repair -- 8.6 Summary and Future Perspectives -- 8.6.1 Anisotropy -- 8.6.2 Graphite Lubricant -- 8.6.3 Multimaterial or Designed Feedstock -- 8.6.4 Effect of Process Parameters on Mechanical Properties -- 8.6.5 Active Cooling/Heating -- 8.6.6 Heat Treatment -- 8.6.7 High‐Temperature Materials - Tool Wear -- 8.6.8 Unique Possibilities -- 8.6.9 Modeling -- References -- Chapter 9 Potential Industrial Applications of Additive Friction Stir Deposition -- 9.1 Large‐Scale Metal Additive Manufacturing -- 9.2 Selective Area Cladding -- 9.3 Recycling and Upcycling -- 9.4 Structural Repair -- 9.5 Underwater Deposition -- Acknowledgment -- References -- Part IV Ultrasonic Additive Manufacturing -- Chapter 10 Process Fundamentals of Ultrasonic Additive Manufacturing -- 10.1 Process Overview -- 10.1.1 Process Parameters -- 10.2 Temperature Rise and Thermal Modeling -- 10.2.1 Heat Generation During Welding -- 10.2.2 Sonotrode Contact Stress -- 10.2.3 Coefficient of Friction -- 10.2.4 Temperature Profile -- 10.3 Feedstock Bonding Mechanisms -- 10.3.1 Oxide Breakdown -- 10.3.2 Asperity Deformation -- 10.3.3 Diffusional Bonding Processes -- 10.3.4 Liquid‐Phase Bonding -- 10.4 Dissimilar Metal Consolidation -- 10.4.1 Mechanical and Thermal Modeling -- 10.4.2 Dissimilar Metal Junction Growth -- 10.4.3 Interdiffusion -- 10.5 Acoustic Softening and Strain Normality -- 10.5.1 Cyclic Strain Ratcheting -- 10.6 Summary -- Acknowledgments -- References -- Chapter 11 Ultrasonic Additive Manufacturing: Microstructural and Mechanical Characterization -- 11.1 Introduction -- 11.2 Microstructure Analysis of UAM Builds -- 11.2.1 Similar Material Joining with UAM -- 11.2.2 Dissimilar Material Joining with UAM -- 11.2.2.1 Al‐Ceramic Weld -- 11.2.2.2 Ni‐Steel Weld -- 11.3 Hardness Analysis of UAM Builds.

11.4 Mechanical Characterization of UAM Builds -- 11.4.1 Design of a Custom Shear Testing Method -- 11.4.2 Validation of the Shear Test -- 11.4.3 Finite element Modeling of the Shear Test -- 11.4.4 Application of the Shear Test to UAM Samples -- 11.5 Conclusions -- References -- Chapter 12 Industrial Applications of Ultrasonic Additive Manufacturing -- 12.1 Early Years -- 12.2 Increased Power → Increased Capability -- 12.3 Modern Applications -- 12.3.1 Electrification -- 12.3.2 Thermal Management -- 12.3.3 Embedded Electronics -- 12.3.3.1 SmartPlate -- 12.3.3.2 SensePipe -- 12.4 Future Applications -- References -- Part V Sintering‐Based Processes -- Chapter 13 Principles of Solid‐State Sintering -- 13.1 Introduction -- 13.2 Basic Terminology -- 13.2.1 Sintering -- 13.2.2 Relative Density/Green Density -- 13.2.3 Coordination Number -- 13.2.4 Surface Tension/Surface Energy -- 13.2.5 Wetting Angle/Dihedral Angle -- 13.2.6 Neck Growth/Shrinkage/Densification -- 13.3 Sintering Stress -- 13.3.1 Two Particle Model -- 13.3.1.1 Case I: Without Shrinkage -- 13.3.1.2 Case II: With Shrinkage -- 13.3.2 Driving Force -- 13.3.3 Interfacial Activity/Thermodynamics -- 13.4 Mass Transport Mechanisms -- 13.4.1 Grain Boundary Diffusion -- 13.4.2 Lattice/Volume Diffusion -- 13.4.3 Viscous Flow -- 13.4.4 Surface Diffusion -- 13.4.5 Evaporation/Condensation -- 13.4.6 Gas Diffusion -- 13.5 Sintering Stages -- 13.6 Sintering Simulation -- 13.7



Concluding Remarks, Challenges, and Future Works -- References -- Chapter 14 Material Extrusion Additive Manufacturing -- 14.1 Introduction -- 14.2 Hierarchy of MEAM Parts and Feedstock Behavior -- 14.3 Feedstock Attributes -- 14.4 Extrusion Control -- 14.5 Toolpathing: Strength and Quality -- 14.6 Conclusions -- Acknowledgments -- References -- Chapter 15 Binder Jetting‐based Metal Printing -- 15.1 Introduction to Binder Jetting.

15.2 Printing Phase.

Sommario/riassunto

This book provides a comprehensive overview of solid-state metal additive manufacturing, focusing on its physics, processes, mechanical properties, and applications. It contrasts solid-state methods with traditional fusion-based approaches, highlighting advantages such as lower energy consumption and reduced stress formation. The book explores various techniques including cold spray additive manufacturing, additive friction stir deposition, and ultrasonic additive manufacturing. Targeted at researchers and professionals in academia, industry, and national laboratories, it aims to equip readers with a deep understanding of the fundamental principles and technological advancements in solid-state metal additive manufacturing, emphasizing its growing significance in sectors like aerospace, automotive, and defense.