1.

Record Nr.

UNINA9910877072203321

Autore

Feidt Michel

Titolo

Advances in Thermodynamics and Circular Thermoeconomics : Fundamentals and Criteria

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-394-26487-9

1-394-26486-0

1-394-26485-2

Edizione

[1st ed.]

Descrizione fisica

1 online resource (269 pages)

Altri autori (Persone)

Valeroantonio

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Introduction -- Chapter 1. From Equilibrium Thermodynamics to Irreversible Thermodynamics -- 1.1. Recent emergence of thermodynamics: from heat to engines -- 1.1.1. Heat and temperature -- 1.1.2. Matter and chemical reactions -- 1.1.3. Mechanical energy -- 1.1.4. Heat-work equivalence -- 1.2. From engines to concepts (work by Carnot) -- 1.2.1. The steam engine and other engines -- 1.2.2. The Carnot cycle -- 1.2.3. Carnot efficiency -- 1.2.4. Engine power -- 1.3. From thermostatics to thermodynamics -- 1.3.1. The basics of thermodynamics -- 1.3.2. Thermodynamic transformation -- 1.3.3. Energy transfers and conversion -- 1.3.4. Generalization of cycle and efficiency concepts -- 1.4. Case study: the Carnot engine -- 1.4.1. Energy and entropy balances -- 1.4.2. Entropy production and energy efficiency -- 1.5. First conclusions and perspectives -- 1.6. References -- Chapter 2. Two-Heat-Source Thermodynamic Cycles: Representation as a Ternary Diagram -- 2.1. Introduction to two-heat-source systems -- 2.2. Definitions and convention -- 2.2.1. Work and heat -- 2.2.2. Sign convention -- 2.2.3. Heat source/sink -- 2.2.4. First-law balance -- 2.2.5. Second-law balance -- 2.3. Graphic representations - state of the art -- 2.3.1. Q-T diagram -- 2.3.2. Borel and Favrat diagram -- 2.3.3. Raveau diagram -- 2.4. Ternary diagram



-- 2.4.1. Ternary diagram representation -- 2.4.2. Interpretation using polar coordinates -- 2.5. Application examples -- 2.5.1. Endo-reversible (exo-irreversible) two-heat-source systems -- 2.5.2. Exo-reversible (endo-irreversible) two-heat-source systems -- 2.5.3. General case - endo- and exo-irreversible systems -- 2.6. Conclusion and prospects -- 2.7. References -- Chapter 3. Thermodynamics with Finite Speed -- 3.1. Introduction.

3.2. First developments of TFS (1964-1974) -- 3.2.1. The origin of TFS -- 3.2.2. Fundamental concepts -- 3.2.3. The first law of thermodynamics for finite-speed processes in simple systems -- 3.2.4. First approach to Beau de Rochas and Otto's finite speed irreversible cycle -- 3.3. Developments of TFS during the period 1990-2007 -- 3.3.1. First law of thermodynamics for finite speed processes in complex closed systems -- 3.3.2. The direct method of TFS -- 3.4. Main achievements of TFS and the direct method -- 3.4.1. Modeling and optimization of the Stirling engine cycle -- 3.4.2. Optimization of the Carnot engine irreversible cycle -- 3.4.3. Effect of irreversibilities on the efficiency of the Beau de Rochas-Otto cycle at finite speed -- 3.4.4. Optimization of diesel cycle efficiency at finite speed -- 3.5. New developments and extension of TFS -- 3.6. International recognition of TFS and the direct method -- 3.7. Conclusion -- 3.8. References -- Chapter 4. Finite Physical Dimensions Thermodynamics -- 4.1. Introduction -- 4.2. The Carnot engine according to equilibrium thermodynamics -- 4.2.1. Equilibrium thermodynamics and heat losses -- 4.2.2. Exo-reversible Carnot engine (endo-irreversible) -- 4.2.3. Power of the exo-reversible Carnot engine -- 4.3. The Chambadal engine model (1957) -- 4.3.1. Optimization of the modified Chambadal engine without source-converter heat transfer coupling constraint -- 4.3.2. Optimization of the modified Chambadal engine, with the transfer entropy constraint -- 4.3.3. Section conclusion -- 4.4. The Curzon-Ahlborn model (1975) -- 4.4.1. Optimization of mechanical energy -- 4.4.2. Optimization of mechanical power -- 4.5. Finite speed thermodynamics -- 4.5.1. Introduction -- 4.5.2. Expression of the first law of thermodynamics for finite speed processes -- 4.5.3. Extension of the method.

4.6. Finite physical dimensions optimal thermodynamics: case without coupling of sources and sinks with the converter -- 4.7. Finite physical dimensions optimal thermodynamics: case with source and sink coupling with the converter -- 4.7.1. Irreversible Carnot engine with finite source and sink -- 4.7.2. Irreversible Carnot engine with finite converter -- 4.8. Chapter conclusion -- 4.9. Appendix -- 4.10. References -- Chapter 5. Circular Thermoeconomics: A Waste Cost Accounting Theory -- 5.1. Introduction -- 5.1.1. Toward a general theory of process efficiency -- 5.1.2. Basic concepts -- 5.2. The exergy cost theory -- 5.2.1. The principle of non-equivalence of local irreversibilities -- 5.2.2. The cost formation process of waste -- 5.2.3. Waste flows cost allocation -- 5.2.4. Exergy cost computation -- 5.3. Structural theory of thermoeconomics -- 5.3.1. Marginal cost equations -- 5.3.2. Linear model of characteristic equations -- 5.4. Structural theory and exergy cost -- 5.4.1. The flow-process model -- 5.4.2. The characteristic equations of exergy cost theory -- 5.4.3. The fuel impact formula -- 5.4.4. Cost decomposition -- 5.4.5. Efficiency and recycling -- 5.5. Conclusion -- 5.5.1. The structural theory -- 5.5.2. Circular economy and industrial symbiosis -- 5.6. References -- Chapter 6. The Relative Free Energy Function: A New Approach to Thermoeconomic Diagnosis -- 6.1. Introduction -- 6.2. Drawbacks of exergy -- 6.3. The relative free energy function -- 6.4. h-s deterioration(s) path(s) of an energy system -- 6.5. The Legendre transform of a deterioration path



-- 6.6. Conclusion -- 6.7. Epilogue -- 6.8. References -- List of Authors -- Index -- EULA.