1.

Record Nr.

UNINA9910876549903321

Autore

Ding Baocang

Titolo

Model Predictive Control

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-119-47142-7

1-119-47145-1

Edizione

[1st ed.]

Descrizione fisica

1 online resource (307 pages)

Collana

IEEE Press Series

Altri autori (Persone)

YangYuanqing

Soggetti

Predictive control

Process control

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acronyms -- Introduction -- Chapter 1 Concepts --   1.1 PID and Model Predictive Control --   1.2 Two‐Layered Model Predictive Control --   1.3 Hierarchical Model Predictive Control -- Chapter 2 Parameter Estimation and Output Prediction --   2.1 Test Signal for Model Identification --     2.1.1 Step Test --     2.1.2 White Noise --     2.1.3 Pseudo‐Random Binary Sequence --     2.1.4 Generalized Binary Noise --   2.2 Step Response Model Identification --     2.2.1 Model --     2.2.2 Data Processing --       2.2.2.1 Marking or Interpolation of Bad Data --       2.2.2.2 Smoothing Data --     2.2.3 Model Identification --       2.2.3.1 Case Grouping --       2.2.3.2 Cased Data Preparation for Stable Dependent Variables --       2.2.3.3 Cased Data Preparation for Integral Dependent Variables --       2.2.3.4 Least Square Solution to Parameter Regression --       2.2.3.5 Least Square Solution by SVD Decomposition --       2.2.3.6 Filtering Pulse Response Coefficients

Sommario/riassunto

This book provides an in-depth exploration of Model Predictive Control (MPC), a class of model-based control algorithms. It delves into various aspects such as parameter estimation, steady-state target calculation, and two-layered dynamic matrix control (DMC) for stable and integral processes. The authors, Baocang Ding and Yuanqing Yang, aim to educate both undergraduate and graduate students, as well as



practitioners in automation and control systems. The text covers theoretical foundations and practical applications, including robust and heuristic models, output feedback, and real-time optimization. The book is intended for those studying or working in fields like process control and automation, offering insights into advanced control strategies and algorithm implementation.