|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910874670703321 |
|
|
Autore |
Maia F. Raquel |
|
|
Titolo |
Handbook of the Extracellular Matrix : Biologically-Derived Materials |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing AG, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (1322 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
OliveiraJ. Miguel |
ReisRui L |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- About the Editors -- Contributors -- Part I: Fundamentals of the Extracellular Matrix -- 1 Composition of the Extracellular Matrix -- Introduction -- Collagens, the Most Abundant Structural Components of the Extracellular Matrix -- Collagen Genes and Collagen Chains -- The Collagen Domain -- Fibril-Forming Cogens Collagens -- Non-fibrillar Collagens -- Network-Forming Collagens IV, VI, VIII, and X -- A Collagen Unique of Its Kind, Collagen VII -- FACITs -- Transmembrane Collagens -- Multiplexins -- Glycoproteins of the Extracellular Matrix -- Fibronectin -- Laminins and Related Glycoproteins -- Elastin and Elastic Fibers -- Elastin -- Fibrillins and LTBPs -- Fibulins -- Non-structural Glycoproteins -- Tenascins -- Thrombospondins -- SPARC/BM-40/Osteonectin and the SPOCK/Testican Family -- Glycosaminoglycans and Proteoglycans -- Extracellular Proteoglycans -- The Small Leucine-Rich Proteoglycans (SLRPs) -- Hyalectans/Lecticans -- Basement Membrane Proteoglycans Perlecan and Agrin -- Cell Surface Proteoglycans -- Syndecans -- Glypicans -- Other Transmembrane Proteoglycans -- Supramolecular Assemblies -- The Network of Fibril-Forming Collagens -- The Classical Supramolecular Structure of Basement Membranes -- A Supramolecular Structure Specific to Basement Membrane Underlying Stratified Epithelia -- Conclusions and Perspectives -- References -- 2 |
|
|
|
|
|
|
|
|
|
Extracellular Matrix Bioscaffolds: Structure-Function -- Introduction -- ECM Genesis -- Composition and Structure of the ECM -- ECM Function and Structure -- ECM Bioscaffolds for Tissue Repair -- Clinical Applications of Bioscaffolds -- Future Perspectives -- Conclusion -- References -- 3 Extracellular Matrix Bioactive Molecules and Cell Behavior Modeling -- Introduction -- Extracellular Matrix (ECM) Components -- The ECM as a Reservoir for Bioactive Molecules. |
Growth Factors -- Heparin for Growth Factor Release -- Biomimetic ECMs -- Engineered ECMs with Bioactive Motifs -- RGD -- IKVAV -- YIGSR -- Design Considerations of Peptide Motifs -- Comparison of Motifs in Modulating Cellular Behavior -- Challenges and Future Directions -- Cross-References -- References -- 4 Mechanical Properties of the Extracellular Matrix -- Introduction -- Mechanics of the Different ECM Components -- Collagens -- Elastin -- Fibronectin -- Proteoglycans and Glycosaminoglycans -- Models to Study the Mechanical Properties of the ECM -- Endogenous ECM -- Decellularization of Tissues -- ECM Hydrogels -- Measurement of the ECM Mechanics -- Tensile and Compression Testing -- Rheological Characterization -- Atomic Force Microscopy -- Cell-ECM Mechanical Interactions Measurement -- Future Directions -- References -- 5 Collagen Fibril Reinforcement in Connective Tissue Extracellular Matrices -- Introduction -- Collagen Fibril Reinforcing ECM: How It All Began -- The Holmes-Chapman-Kadler Discovery: Seeing Is Believing -- Collagen Fibril Reinforcing ECM Hypothesis: Much Ado About Theories? -- Stress Transfer Mechanism in ECM -- A Framework for ECM Mechanics -- Elastic Stress Transfer in ECM: A General Theory at Last -- The Topçu Model -- Fibril Ends -- Interfacial Interactions -- The Shear-Lag (Beta) Parameter -- Three-Dimensional Unit Cell -- Application to Fibers with Tapered (Paraboloidal) Ends -- Influence of Elastic Moduli Ratio and Fibril Slenderness on Axial Stress Uptake -- Critical Length for Fibril Yielding -- Conclusion -- References -- 6 Extracellular Matrix Isolation: Sources and Methods -- Introduction -- ECM Isolation Methods -- Chemical Methods -- Enzymatic Methods -- Physical Methods -- Sources: ECM from Healthy Tissues -- Tissues Derived from the Mesoderm -- Bone -- Cartilage -- Adipose Tissue -- Muscle. |
Cardiovascular Tissue -- Vascular Tissue -- Dermal Tissue -- Kidney -- Tissues Derived from the Endoderm -- Respiratory System -- Pancreas -- Liver -- Digestive Tract -- Tissues Derived from the Ectoderm -- Nervous System -- Cornea -- Sources: ECM from Tumors -- Mammary Gland Tumors -- Colon Tumors -- Liver Tumors -- Brain Tumors -- Sources: ECM from in Vitro Cultured Cells -- Clinical Applications of Decellularized ECM -- Conclusions -- References -- 7 Strategies for Mimicking Extracellular Matrix -- Introduction -- Mimicking the Biochemical Properties of ECMs -- Collagens -- Polysaccharides -- Fibrin -- Elastin -- Fibronectin -- ECM Blents -- Mimicking the Mechanical Properties -- Soft Tissues -- Elastic Tissues -- Hard Tissues -- Mimicking the Topography -- Examples of Strategies to Mimic ECMs -- Design of Cardiac or Skeletal Muscle ECM to Develop 3D In Vitro Models -- Mimicking Intervertebral Disk Structure and Physical Properties to Treat Disk Degeneration -- Nucleus Pulposus -- Annulus Fibrosus -- Mimicking Topography and Biochemical Properties of Compact Bone -- Future Directions -- Concluding Remarks -- Cross-References -- References -- 8 Extracellular Matrix Remodeling on Cancer Progression -- Introduction -- The Two Compartments of ECM -- Basement Membrane -- Major Components of BM and Their Function -- Interstitial Matrix -- Major Components of IM and Their Function -- Remodeling of ECM in |
|
|
|
|
|
|
|
Tumorigenesis -- Tumorigenic ECM Remodeling Mechanisms -- ECM Deposition and Modification -- Posttranslational Modification -- ECM Degradation -- Force-Mediated ECM Remodeling -- ECM Remodeling in Primary Tumor -- ECM Remodeling During Tumor Cell Migration -- Vital Extracellular Matrix Components and Their Role in Remodeling -- Collagen -- Matrix Metalloproteinases -- Lysyl Oxidase -- TGF-β -- Conclusion -- References -- Part II: Protein-Based Materials. |
9 Advances in ECM Protein-Based Materials -- Introduction -- ECM Protein Categories -- Fibrous Proteins -- Collagen -- Elastin -- Glycoproteins -- Proteoglycans -- Fibronectin -- Laminin -- Protein-Based Materials -- 0D Structure -- 1D Structure -- 2D Structure -- 3D Structure -- ECM Protein-Based Structures -- Collagen -- 1D Collagen-Based Structures -- 2D Collagen-Based Structures -- 3D Collagen-Based Structures -- Elastin -- 1D Elastin-Based Structures -- 2D Elastin-Based Structures -- 3D Elastin-Based Structures -- Proteoglycans -- 1D Proteoglycan-Based Structures -- 2D Proteoglycan-Based Structures -- 3D Proteoglycan-Based Structures -- Fibronectin -- 1D Fibronectin-Based Structures -- 2D Fibronectin-Based Structures -- 3D Fibronectin-Based Structures -- Laminin -- 1D Laminin-Based Structures -- 2D Laminin-Based Structures -- 3D Laminin-Based Structures -- Conclusions and Outlook -- References -- 10 Protein-Based Scaffolds for Musculoskeletal Tissue Repair and Regeneration -- Introduction -- Key Musculoskeletal Tissues and Their Compositions -- Bone -- Cartilage -- Other Key Connective/Musculoskeletal Tissues -- Proteins in Musculoskeletal Tissue Engineering -- Key Proteins Biochemistry, Structure, and Application in Musculoskeletal Tissue Engineering -- Collagens -- Gelatin -- Silkworm Silk -- Fibrin and Elastin -- Protein-Based Scaffolds for Musculoskeletal Tissue Engineering -- Bone Tissue Engineering -- Cartilage Tissue Engineering -- Tendon and Ligament Tissue Engineering -- Cross-linking of Protein-Based Biomaterials -- Design and Fabrication of Protein-Based Scaffolds -- Commercially Available Protein-Based Biomaterials for Musculoskeletal Tissue Regeneration -- Perspective Summary -- Cross-References -- References -- 11 Protein-Based Materials as Cancer In Vitro Models -- Introduction -- Collagen as In Vitro Cancer Model. |
Collagen-Based Hydrogels -- Gelatin as In Vitro Cancer Model -- Gelatin-Based Hydrogels -- Fibrin as In Vitro Cancer Model -- Fibrin-Based Hydrogels -- Silk Fibroin as In Vitro Cancer Model -- Silk Fibroin-Based Hydrogels -- Conclusions and Future Perspectives -- Cross-References -- References -- 12 Proteins and Polypeptides as Biomaterials Inks for 3D Printing -- Introduction -- Protein-Based Biomaterials -- Engineered Proteins -- Crosslinking Methods and Chemical Modifications -- Physical and Noncovalent Crosslinking -- Chemical Crosslinking -- Photocrosslinking -- Chemical Reactions and Chemical Crosslinkers -- Enzymatic Crosslinking -- Commercially Available Protein-Based Biomaterials Inks -- Considerations for Using Protein-Based Biomaterials Inks -- Conclusion and Future Perspective -- Cross-References -- References -- 13 Protein-Based Microfluidic Models for Biomedical Applications -- Introduction -- Synthesis of Microfluidic Protein-Based Biomaterials -- Subtractive Approaches -- Additive Approaches -- Approaches That Use Biologically Derived Patterns -- Microfluidic ECMs in Models of the Microvascular System -- Transformation of Microfluidic Channels into Microvessels -- Physical Factors in Microfluidic Vascularization -- Models of Microvascular Activation -- Models of Microvascular Transport and Drainage -- Computational Design of Microfluidic ECM for Vascularization -- Microfluidic ECMs in Models of Epithelial Ducts -- Similarities and |
|
|
|
|
|
|
|
|
Differences with Endothelialization -- Formation of Epithelial Tubes in Microfluidic ECM -- Design Considerations for Epithelialization -- Conclusions -- Cross-References -- References -- 14 Protein-Based Materials in Cosmetics -- Introduction -- History of Use of Proteins in Cosmetics -- Skin Aging -- Hair Damages -- Definition of the Cosmetics-Related Proteins -- Native Proteins -- Protein Hydrolysates. |
Quat Proteins. |
|
|
|
|
|
| |