1.

Record Nr.

UNINA9910872189203321

Autore

Toda Yukinobu

Titolo

Categorical Donaldson-Thomas Theory for Local Surfaces / / by Yukinobu Toda

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

9783031617058

9783031617041

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (318 pages)

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2350

Disciplina

516.35

Soggetti

Algebraic geometry

Algebra, Homological

Mathematical physics

Algebraic Geometry

Category Theory, Homological Algebra

Mathematical Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

- Introduction -- Koszul duality equivalence -- Categorical DT theory for local surfaces -- D-critical D/K equivalence conjectures -- Categorical wall-crossing via Koszul duality -- Window theorem for DT categories -- Categori ed Hall products on DT categories -- Some auxiliary results.

Sommario/riassunto

This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics. Requiring a basic knowledge of algebraic



geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.