1.

Record Nr.

UNINA9910869199103321

Autore

Rathore Pramod Singh

Titolo

Deep Learning Techniques for Automation and Industrial Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-394-23425-2

1-394-23427-9

1-394-23426-0

Edizione

[1st ed.]

Descrizione fisica

1 online resource (280 pages)

Altri autori (Persone)

AhujaSachin

BurriSrinivasa Rao

KhuntetaAjay

BaliyanAnupam

KumarAbhishek

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Text Extraction from Images Using Tesseract -- 1.1 Introduction -- 1.1.1 Areas -- 1.1.2 Why Text Extraction? -- 1.1.3 Applications of OCR -- 1.2 Literature Review -- 1.3 Development Areas -- 1.3.1 React JavaScript (JS) -- 1.3.2 Flask -- 1.4 Existing System -- 1.5 Enhancing Text Extraction Using OCR Tesseract -- 1.6 Unified Modeling Language (UML) Diagram -- 1.6.1 Use Case Diagram -- 1.6.2 Model Architecture -- 1.6.3 Pseudocode -- 1.7 System Requirements -- 1.7.1 Software Requirements -- 1.7.2 Hardware Requirements -- 1.8 Testing -- 1.9 Result -- 1.10 Future Scope -- 1.11 Conclusion -- References -- Chapter 2 Chili Leaf Classification Using Deep Learning Techniques -- 2.1 Introduction -- 2.2 Objectives -- 2.3 Literature Survey -- 2.4 About the Dataset -- 2.5 Methodology -- 2.6 Result -- 2.7 Conclusion and Future Work -- References -- Chapter 3 Fruit Leaf Classification Using Transfer Learning Techniques -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Methodology -- 3.3.1 Image Preprocessing -- 3.3.2 Data Augmentation -- 3.3.3 Deep Learning



Models -- 3.3.4 Accuracy Chart -- 3.3.5 Accuracy and Loss Graph -- 3.4 Conclusion and Future Work -- References -- Chapter 4 Classification of University of California (UC), Merced Land-Use Dataset Remote Sensing Images Using Pre-Trained Deep Learning Models -- 4.1 Introduction -- 4.2 Motivation and Contribution -- 4.2.1 Related Work -- 4.3 Methodology -- 4.3.1 Pre-Trained Models -- 4.3.2 Dataset -- 4.3.3 Training Processes -- 4.4 Experiments and Results -- 4.4.1 VGG Family -- 4.4.2 ResNet Family -- 4.4.2.1 ResNet101 -- 4.4.2.2 ResNet152 -- 4.4.3 MobileNet Family -- 4.4.4 Inception Family -- 4.4.5 Xception Family -- 4.4.6 DenseNet Family -- 4.4.7 NasNet Family -- 4.4.8 EfficientNet Family -- 4.4.9 ResNet Version 2.

4.5 Conclusion -- References -- Chapter 5 Sarcastic and Phony Contents Detection in Social Media Hindi Tweets -- 5.1 Introduction -- 5.1.1 Sarcasm in Social Media Hindi Tweets -- 5.2 Literature Review -- 5.2.1 Literature Review of Sarcasm Detection Based on Data Analysis Without Machine Learning Algorithms -- 5.2.1.1 Other Related Works without Machine Learning Algorithms for Sarcasm Detection -- 5.2.2 Literature Review of Sarcasm Detection with Machine Learning Algorithms and Based on Manual Feature Engineering Approach -- 5.3 Research Gap -- 5.4 Objective -- 5.5 Proposed Methodology -- 5.6 Expected Outcomes -- References -- Chapter 6 Removal of Haze from Synthetic and Real Scenes Using Deep Learning and Other AI Techniques -- 6.1 Introduction -- 6.2 Formation of a Haze Model -- 6.3 Different Techniques of Single-Image Dehazing -- 6.3.1 Contrast Enhancement -- 6.3.2 Dark Channel Prior -- 6.3.3 Color Attenuation Prior -- 6.3.4 Fusion Techniques -- 6.3.5 Deep Learning -- 6.4 Results and Discussions -- 6.5 Output for Synthetic Scenes -- 6.6 Output for Real Scenes -- 6.7 Conclusions -- References -- Chapter 7 HOG and Haar Feature Extraction-Based Security System for Face Detection and Counting -- 7.1 Introduction -- 7.1.1 Need for a Better Security System -- 7.2 Literature Survey -- 7.3 Proposed Work -- 7.3.1 Tools Used -- 7.3.2 Algorithm of the Proposed System -- 7.3.2.1 HOG-Based Individual Counting -- 7.3.2.2 Haar-Based Individual Counting -- 7.3.2.3 Combination of HOG and Haar -- 7.3.2.4 AdaBoost Learning Technique -- 7.3.2.5 KLT Tracker -- 7.4 Experiments and Results -- 7.5 Conclusion and Scope of Future Work -- References -- Chapter 8 A Comparative Analysis of Different CNN Models for Spatial Domain Steganalysis -- 8.1 Introduction -- 8.2 General Framework -- 8.2.1 Dataset -- 8.2.2 Deep Learning CNN Models -- 8.2.2.1 XuNet.

8.2.2.2 Pretrained Networks -- 8.3 Experimental Results and Analysis -- 8.4 Conclusion and Discussion -- Acknowledgments -- References -- Chapter 9 Making Invisible Bluewater Visible Using Machine and Deep Learning Techniques-A Review -- 9.1 Introduction -- 9.1.1 Why is It Difficult to Measure Subsurface Groundwater? -- 9.1.2 What are High Level Tasks Involved in Groundwater Measurement? -- 9.2 Determination of Groundwater Potential (GWP) Parameters -- 9.2.1 Groundwater Potential (GWP) Parameters -- 9.2.2 Analysis of the Key GWP Parameters -- 9.3 GWP Determination: Methods and Techniques -- 9.4 GWP Output: Applications -- 9.5 GWP Research Gaps: Future Research Areas -- 9.6 Conclusion -- References -- Chapter 10 Fruit Leaf Classification Using Transfer Learning for Automation and Industrial Applications -- 10.1 Introduction -- 10.1.1 Overview of Fruit Leaf Classification and Its Relevance in Automation and Industrial Applications -- 10.1.2 Challenges of Building a Classification Model from Scratch -- 10.1.3 Introduction to Transfer Learning as a Solution -- 10.1.4 Overview of Popular Pre-Trained Models -- 10.1.4.1 Visual Geometry Group -- 10.1.4.2 Residual Network -- 10.1.4.3 Inception -- 10.2 Data Collection and Preprocessing -- 10.2.1 Importance of Data



Collection and Preprocessing -- 10.2.2 Data Augmentation in Fruit Leaf Classification -- 10.2.3 Normalization and Resizing in Fruit Leaf Classification -- 10.3 Loading a Pre-Trained Model for Fruit Leaf Classification Using Transfer Learning -- 10.3.1 Code Examples for Implementing Transfer Learning Using TensorFlow -- 10.4 Training and Evaluation -- 10.4.1 Explanation of Training and Evaluation Process -- 10.4.2 Metrics for Measuring Model Performance -- 10.5 Applications in Automation and Industry -- 10.5.1 Benefits of Using Transfer Learning in Automation and Industrial Settings.

10.5.2 Case Studies of Fruit Leaf Classification in Industry Using Transfer Learning -- 10.6 Conclusion -- 10.7 Future Work -- References -- Chapter 11 Green AI: Carbon-Footprint Decoupling System -- 11.1 Introduction -- 11.2 CO2 Emissions in Sectors -- 11.3 Heating and Cooking Emissions -- 11.4 Automobile Systems Emission -- 11.5 Power Systems Emission -- 11.5.1 Map -- 11.6 Total CO2 Emission -- 11.6.1 Relationship Between Tables -- 11.6.2 Group by Clause -- 11.6.3 Offshore Wind Storage Integration Method -- 11.6.4 Offshore Floating Wind and Power Generation Technology (OFWPP) -- 11.6.5 Wind Power Plant for Storage Mixing -- 11.6.6 The Effect on the Environment when Using Battery Storage -- 11.7 Green AI With a Control Strategy of Carbon Emission -- 11.8 Green Software -- 11.9 Conclusion -- 11.10 Future Scope and Limitation -- References -- Chapter 12 Review of State-of-Art Techniques for Political Polarization from Social Media Network -- 12.1 Introduction -- 12.1.1 Social Media -- 12.2 Political Polarization -- 12.2.1 Identification of the Parties -- 12.2.2 Definition of Political Ideology -- 12.2.3 Voting Conduct (Definition) -- 12.2.4 Definition of Policy Positions -- 12.2.5 Definition of Affective Polarization -- 12.2.6 Identifiability of Parties (Definition) -- 12.2.7 Definition of Political Ideology -- 12.2.8 Definition of Voting Behavior -- 12.2.9 Policy Positions (Definition) -- 12.2.10 Party Sorting -- 12.2.11 Affective Polarization (Definition) -- 12.3 State-of-the-Art Techniques -- 12.3.1 Word Embedding (WE) -- 12.3.2 Customary Models -- 12.3.3 Models of Deep Neural Networks (DNN) -- 12.3.4 Single and Hybrid ML Techniques -- 12.3.4.1 Single Methods -- 12.3.4.2 Hybrid Approaches -- 12.3.5 Multitask Learning (V) -- 12.3.5.1 Learning-Related Problem -- 12.3.5.2 Multi-Task Learning MTL -- 12.3.5.3 Architectures for Multiple Tasks.

12.3.5.4 Two MTL Deep Learning Methods -- 12.3.6 Techniques for Deep Learning -- 12.4 Literature Survey -- 12.5 Conclusion -- References -- Chapter 13 Collaborative Design and Case Analysis of Mobile Shopping Apps: A Deep Learning Approach -- 13.1 Introduction -- 13.1.1 Basic Rules in Shopping App Interaction Design -- 13.1.1.1 User-Centered Design Rules -- 13.1.2 Visual Interface Consistency -- 13.2 Personalized Interaction Design Framework for Mobile Shopping -- 13.2.1 Modelized Interaction Information Framework -- 13.2.2 Interactive Design Path Analysis -- 13.2.3 Optimization Design in the Page System -- 13.3 Case Analysis -- 13.4 Conclusions -- References -- Chapter 14 Exploring the Potential of Machine Learning and Deep Learning for COVID-19 Detection -- 14.1 Introduction -- 14.2 Supervised Learning Techniques -- 14.3 Unsupervised Learning Techniques -- 14.4 Deep Learning Techniques -- 14.5 Reinforcement Learning Techniques -- 14.6 Comparison of Machine Learning and Deep Learning Techniques -- 14.7 Challenges and Limitations -- 14.8 Conclusion and Future Directions -- References -- Index -- EULA.