1.

Record Nr.

UNINA9910865244003321

Autore

Van der Elst Wim

Titolo

Regression-Based Normative Data for Psychological Assessment : A Hands-On Approach Using R / / by Wim Van der Elst

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

9783031509513

9783031509506

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (485 pages)

Disciplina

153.930285

Soggetti

Psychology

Psychological tests

Psychology - Methodology

Social sciences - Statistical methods

Behavioral Sciences and Psychology

Psychological Assessment

Psychological Testing

Psychological Methods

Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

General introduction.-The R programming language -- Normative data accounting for a binary independent variable -- Assumption of the normal error regression model -- Normative data accounting for a non-binary qualitative independent variable -- Normative data accounting for a quantitative independent variable -- Normative data accounting for multiple qualitative and/or quantitative independent variables -- Quantifying uncertainty in regression-based norms.

Sommario/riassunto

Over the last 20 years, so-called regression-based normative methods have become increasingly popular. In this approach, regression models for the mean and the residual variance structure are used to derive the normative data. The regression-based normative approach has some important advantages over the traditional normative approach, e.g., it allows for deriving more fine-grained norms and typically requires a



substantially smaller sample size to derive accurate norms.This book focuses on regression-based methods to derive normative data. The target audience are psychologists and other researchers in the behavioral sciences who are interested in deriving normative data for psychological tests (e.g., cognitive tests, questionnaires, rating scales, etc.). The book provides the essential theoretical background that is needed to understand the methodology, with a strong emphasis on the practical/real-life application of the methodology. To this end, the book is also accompanied by an open-source software package (the R library NormData) that is used to exemplify how normative data can be derived in several case studies. Provides a solid introduction in regression-based normative methods without being overly technical; Comes with a comprehensive open-source software package to help efficiently derive regression-based normative data; Focuses strongly on the practical application of the methodology using various real-life case studies. .