1.

Record Nr.

UNINA9910863167703321

Autore

Genuer Robin

Titolo

Random Forests with R / / by Robin Genuer, Jean-Michel Poggi

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

9783030564858

3030564851

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (X, 98 p. 49 illus., 5 illus. in color.)

Collana

Use R!, , 2197-5744

Disciplina

519.5

Soggetti

Statistics

Big data

Bioinformatics

Biometry

Social sciences - Statistical methods

Statistical Theory and Methods

Big Data

Biostatistics

Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- CART trees -- Random forests -- Variable importance -- Variable selection -- References.

Sommario/riassunto

This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quantitative explanatory variables together, without pre-processing. Moreover, they can be used to process standard data for which the number of observations is higher than the number of variables, while also performing very well in the high dimensional case, where the number of variables is quite large in



comparison to the number of observations. Consequently, they are now among the preferred methods in the toolbox of statisticians and data scientists. The book is primarily intended for students in academic fields such as statistical education, but also for practitioners in statistics and machine learning. A scientific undergraduate degree is quite sufficient to take full advantage of the concepts, methods, and tools discussed. In terms of computer science skills, little background knowledge is required, though an introduction to the R language is recommended. Random forests are part of the family of tree-based methods; accordingly, after an introductory chapter, Chapter 2 presents CART trees. The next three chapters are devoted to random forests. They focus on their presentation (Chapter 3), on the variable importance tool (Chapter 4), and on the variable selection problem (Chapter 5), respectively. After discussing the concepts and methods, we illustrate their implementation on a running example. Then, various complements are provided before examining additional examples. Throughout the book, each result is given together with the code (in R) that can be used to reproduce it. Thus, the book offers readers essential information and concepts, together with examples and the software tools needed to analyse data using random forests. .