1.

Record Nr.

UNINA9910861096903321

Autore

Wani Mohmmad Younus

Titolo

Nanotechnology Based Strategies for Combating Antimicrobial Resistance

Pubbl/distr/stampa

Singapore : , : Springer Singapore Pte. Limited, , 2024

©2024

ISBN

981-9720-23-0

Edizione

[1st ed.]

Descrizione fisica

1 online resource (585 pages)

Altri autori (Persone)

WaniIrshad Ahmad

RaiAkhilesh

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Antimicrobial Resistance: An Overview -- 1.1  Introduction -- 1.2  Antibiotics and Its Resistance -- 1.3  Resistance among ESKAPE Pathogens -- 1.3.1  Enterococcus faecium -- 1.3.2  Klebsiella pneumoniae -- 1.3.3  Acinetobacter baumannii -- 1.3.4  Pseudomonas aeruginosa -- 1.3.5  Enterobacter spp -- 1.4  Antibiotic Resistance -- 1.4.1  Resistance to β-Lactam Antibiotics -- 1.4.1.1  Methicillin -- 1.4.1.2  Cephalosporins -- 1.4.1.2.1 Ceftobiprole and Ceftaroline -- 1.4.1.3  Carbapenem -- 1.4.2  Resistance to Antibiotics of Non-β-Lactams Category -- 1.4.2.1  Aminoglycosides -- 1.4.2.1.1 Plazomicin -- 1.4.2.2  Tigecycline -- 1.4.2.2.1 Eravacycline -- 1.4.2.3  Colistin -- 1.4.2.4  Macrolides -- 1.4.2.5  Fluoroquinolones -- 1.4.2.6  Vancomycin -- 1.4.2.7  Linezolid -- 1.4.2.8  Fosfomycin -- 1.4.2.9  Daptomycin -- 1.5  Mechanistic Basis of Antibiotic Resistance -- 1.5.1  Intrinsic Resistome -- 1.5.2  Extrinsic Resistome -- 1.5.3  HGT and Antibiotic Resistance -- 1.5.4  Plasmid-Mediated Antibiotic Resistance -- 1.6  Bioflim and Antibiotic Resistance -- 1.6.1  Biofilm Resistance and Tolerance -- 1.6.2  Biofilm Susceptibility Testing -- 1.7  Resistance in the Environment -- 1.7.1  Pollution as a Driver -- 1.8  Health Assessment -- 1.8.1  Environmental Transmission -- 1.8.2  Exposure Estimates and Risk Assessments -- 1.8.3  Mortality (Direct and Indirect Attribute to Antibiotic Rresistance)



-- 1.8.3.1  Direct Mortality Attributed to Antibiotic Resistance -- 1.8.3.2  Indirect Mortality Mediated by Antibiotic Resistance -- 1.9  Conclusions and Future Prospective -- References -- 2: Role of Nanomedicine in Overcoming Antimicrobial Resistance: Challenges and Opportunities -- 2.1  Introduction -- 2.2  Mechanism of Nanosystems to Combat Antimicrobial Resistance.

2.3  Classification of Nanosystems -- 2.3.1  Inorganic Nanosystems -- 2.3.2  Organic Nanosystems -- 2.3.2.1  Liposomes -- 2.3.2.2  Polymeric Micelles -- 2.3.2.3  Lipid-Based Nanoparticles -- 2.4  Synergistic Effects of Nanosystems with Antibiotics -- 2.4.1  Enhanced Antibacterial Activity -- 2.4.2  Combating Antibiotic Resistance -- 2.4.3  Synergistic Effects of Combination Therapy -- 2.4.4  Targeted Drug Delivery -- 2.5  Novel Approaches for Combatting Antimicrobial Resistance with Nanosystems -- 2.5.1  Lipid Polymer Nanoparticles (LPNs) -- 2.5.2  Phage Therapy -- 2.5.3  Nanoantibiotic -- 2.6  Challenges of Nanomedicine in Combatting Antimicrobial Resistance -- 2.7  Conclusion and Future Perspectives -- References -- 3: Nanotechnology-Based Tools to Overcome Antimicrobial Resistance -- 3.1  Introduction -- 3.2  Classifications of Nanoparticles -- 3.3  Mechanical Properties of Nanomaterials -- 3.4  Current Antimicrobial Resistance Threats -- 3.5  Microbial Resistance Mechanism to Antimicrobials -- 3.6  Role of Biofilms in Antimicrobial Resistance -- 3.6.1  Biofilm Formation -- 3.6.2  Characteristics of Biofilm Formation -- 3.7  Nanotechnology for Antimicrobial Resistance -- 3.7.1  Nanomaterials Against Bacteria -- 3.7.2  Nanomedicines for Antimicrobial Resistance -- 3.8  Recent Advancements in Combating Antimicrobial Resistance -- 3.9  Future Perspectives -- 3.10  Conclusion -- References -- 4: Metal Nanoparticles As Alternative Antimicrobial Agents to Combat Multidrug Resistance Bacteria -- 4.1  Introduction -- 4.2  MNPs and Their Conjugates for Bacterial Detection -- 4.2.1  MNPs -- 4.2.2  MNP Conjugates -- 4.2.2.1  Colorimetric Detection -- 4.2.2.2  Fluorescence-Based Detection -- 4.2.2.3  Nonlinear Optical (NLO) Response-based Detection -- 4.2.2.4  Magnetic Methods -- 4.2.2.5  Electrochemical Methods -- 4.2.2.6  Other Methods.

4.3  MNPs for Bacterial Treatment -- 4.3.1  MNPs -- 4.3.1.1  Mechano-bactericidal -- 4.3.1.2  Releasing Metal Ions -- 4.3.1.3  Photothermal -- 4.3.1.4  MNPs for Combination Therapy -- 4.3.2  MNP Conjugates -- 4.3.2.1  Photothermal Therapy -- 4.3.2.2  Photodynamic and Photothermal Combination Therapy -- 4.3.2.3  Chemotherapy and Photothermal Combination Therapy -- 4.4  MNPs for Bacterial Theranostics -- 4.4.1  MNPs -- 4.4.2  MNP Conjugates -- 4.5  Summary and Perspectives -- References -- 5: Plant Extract-Mediated Synthesis and Antibacterial Potential of Metallic Nanoparticles -- 5.1  Introduction -- 5.2  Nanoparticles: An Overview -- 5.2.1  Introduction to Nanoparticles -- 5.2.2  Types of Nanoparticles -- 5.2.3  Applications of Metallic Nanoparticles -- 5.3  Green Synthesis of Metallic Nanoparticles -- 5.3.1  Principles of Green Synthesis -- 5.3.2  Role and Advantages of Plant Extracts in Nanoparticle Synthesis -- 5.4  Case Studies: Plant-Mediated Metallic Nanoparticles and Antibacterial Activity -- 5.4.1  Silver Nanoparticles (AgNPs) -- 5.4.2  Mechanism of Action for the AgNPs -- 5.4.3  Copper and Copper Oxide Nanoparticles (cu/CuONPs) -- 5.4.4  Mechanism of Action for Copper Nanoparticles -- 5.4.5  Gold Nanoparticles (AuNPs) -- 5.4.6  Mechanism of Action for au NPs -- 5.5  Conclusion and Future Perspectives -- References -- Glossary -- 6: Functionalized Quantum Dots as Antimicrobial Agents -- 6.1  Introduction -- 6.2  Functionalized QDs and Antimicrobial Action -- 6.2.1  ROS Production



-- 6.2.2  Microbial Membranes in Interaction -- 6.2.3  Blocking of Intracellular Mechanisms -- 6.2.4  Effects Dependent on Size -- 6.2.5  Functionalization of Surfaces -- 6.2.6  Photothermal Consequences -- 6.3  Polymer QDs -- 6.3.1  Graphene QDs -- 6.3.2  Cadmium QDs -- 6.3.3  Peptide- and Drug-Functionalized Fluorescent QDs -- 6.3.4  ZnO QDs.

6.3.5  Amino-Functionalized QDs -- 6.3.6  Nanocomposite Material QDs -- 6.3.7  Lead-Based QDs -- 6.3.8  Indium Phosphide QDs -- 6.3.9  Silicon QDs -- 6.3.10  Perovskite QDs -- 6.3.11  Cytotoxicity and Biocompatibility of QDs for Future Scope -- 6.4  Conclusion -- References -- 7: Antimicrobial Peptide-Based Nanomaterials in Combating Multidrug-Resistant Bacteria -- 7.1  Introduction -- 7.2  The History of Antimicrobial Peptides -- 7.3  Importance and Development of AMPs -- 7.4  Classification of AMPs -- 7.5  Mechanism of Action of AMP -- 7.6  AMP-Based Nanomaterials -- 7.7  Advancements in AMP Delivery Via Nanomaterials -- 7.8  Therapeutic Applications of AMPs -- 7.9  Factors Affecting the Activity of AMPs -- 7.10  Challenges and Advantages in AMP-Based Nanomaterials -- 7.11  Conclusion and Future Prospects -- References -- 8: Nanocomposites in Combating Antimicrobial Resistance -- 8.1  Introduction -- 8.1.1  Nanocomposite Materials: Fundamentals and Types -- 8.1.2  Basics of Nanocomposites -- 8.1.3  Types of Nanocomposite Materials -- 8.2  Mechanisms of Antimicrobial Resistance -- 8.2.1  How Microorganisms Develop Resistance? -- 8.2.2  Challenges Posed by Antimicrobial Resistance -- 8.3  Carbon Nanocomposites -- 8.4  Metallic Nanocomposites -- 8.5  Metalloid Nanocomposites -- 8.6  Polymer Nanocomposites -- 8.7  Ceramic Nanocomposites -- 8.8  Conclusion and Future Prospects -- References -- 9: Carbon Nanomaterials as Antimicrobial Agents to Combat Multidrug Resistance -- 9.1  Introduction -- 9.2  Multidrug Resistance -- 9.3  Carbon Nanomaterials -- 9.3.1  Structure and Properties of Carbon Nanostructures -- 9.3.2  Carbon Nanomaterials and their Antimicrobial Mechanisms -- 9.3.2.1  Antimicrobial Properties of Carbon Nanotubes -- 9.3.2.2  Antimicrobial Properties of Fullerenes -- 9.3.2.3  Antimicrobial Properties of Graphene/Graphene Oxide.

9.4  Conclusion -- References -- 10: Polymer-Based Nanomaterials Against Multidrug-Resistant Bacteria -- 10.1  Introduction -- 10.2  Nanomaterials -- 10.2.1  Polymer-Based Nanomaterials -- 10.2.1.1  Nanoparticles -- 10.2.1.2  Nanofibers -- 10.2.1.3  Nanohydrogels -- 10.2.1.4  Nanocomposites -- 10.3  Multidrug-Resistant Bacteria -- 10.3.1  Limiting Drug Uptake -- 10.3.2  Drug Targeting Modification -- 10.3.3  Inactivation of the Drug -- 10.3.4  Efflux Pumps -- 10.3.5  Resistance Mechanisms Through Biofilm Formation -- 10.4  Polymer-Based Nanomaterials Against Multidrug-Resistant Bacteria -- 10.4.1  Mechanisms of Action -- 10.4.1.1  Membrane Targeting Mechanisms -- 10.4.1.2  Nonmembrane Targeting Mechanisms -- 10.4.1.2.1 Production of Reactive Oxygen Species -- 10.4.1.2.2 Binding to and Damaging Intracellular Components -- 10.4.1.3  Mechanisms of Action Against Biofilms -- 10.5  Conclusion and Future Perspectives -- References -- 11: Development of Nanoemulsion-Based Drug Carrier Molecules in the Fight Against Multi-Drug Resistance -- 11.1  Introduction -- 11.1.1  Nanoemulsions -- 11.1.2  Nanoemulsions for Drug Delivery -- 11.1.3  Properties of Nanoemulsions -- 11.1.4  Preparation of Nanoemulsions -- 11.1.4.1  Lipids and Oils -- 11.1.4.2  Proteins -- 11.1.4.3  Polysaccharides -- 11.1.4.4  Surfactants -- 11.1.4.5  Emulsifiers -- 11.1.4.6  Ripening Inhibitors -- 11.1.4.7  Plasticizers -- 11.2  The Application of Nanoemulsions Against Multi-Drug-Resistant Microorganisms -- 11.3  Conclusion and Future



Perspectives -- References -- 12: Nanoemulsions as Drug Carriers to Combat AMR -- 12.1  Introduction -- 12.2  Antimicrobial Resistance (AMR) -- 12.3  Bacterial Resistance Mechanism Towards Traditional Antibiotics -- 12.4  Antimicrobial Resistance: A Global Threat -- 12.5  Nanotechnology to Combat AMR -- 12.6  Nanoemulsions: A Basic Introduction.

12.7  Different Components of a Nanoemulsion System.