| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910861036503321 |
|
|
Autore |
Alam Parvez |
|
|
Titolo |
Composites Engineering |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bristol : , : Institute of Physics Publishing, , 2022 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (206 pages) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Author biography -- Parvez Alam -- Chapter 1 'A' -- 1.1 Abrasion -- 1.2 Accelerated testing -- 1.2.1 Accelerated life testing (ALT) -- 1.2.2 Accelerated degradation testing (ADT) -- 1.2.3 Time, temperature, stress superposition -- 1.3 Additives -- 1.3.1 Cost-saving additives -- 1.3.2 Manufacture and process additives -- 1.3.3 Functional (performance) additives -- 1.4 Adhesion -- 1.4.1 Adhesion in composites -- 1.4.2 Adhesion of composites -- 1.5 Air bubble voids -- 1.6 Angle-ply laminate -- 1.7 Anisotropy -- 1.8 Areal weight -- 1.9 Aramid -- 1.9.1 Meta-aramids (m-aramids) -- 1.9.2 Para-aramids (p-aramids) -- 1.9.3 Comparison of m-aramid and p-aramid properties -- 1.10 Aspect ratio -- 1.11 Autoclave -- 1.12 Automated material placement (AMP) -- 1.12.1 Filament winding (FW) -- 1.12.2 Automated fibre placement/advanced fibre placement (AFP) -- 1.12.3 Automated tape laying (ATL) -- References -- Chapter 2 'B' -- 2.1 Bag moulding (vacuum bag moulding) -- 2.1.1 The process -- 2.1.2 Benefits of bag moulding -- 2.1.3 Disadvantages of bag moulding -- 2.2 Balanced laminates -- 2.3 Band width -- 2.3.1 In: filament winding -- 2.3.2 In: piezoelectric composites -- 2.4 Batt -- 2.5 Biaxial Load -- 2.6 Burst strength -- 2.6.1 Hydraulic testing for burst strength -- 2.6.2 Mullen test for burst strength -- 2.6.3 Ball test for burst strength -- References -- Chapter 3 'C' -- 3.1 C-scan -- 3.2 Carbon fibre -- 3.2.1 Carbon fibre reinforced plastic (CFRP) -- 3.3 Cellular solids -- 3.3.1 Honeycomb structures -- 3.3.2 Foams -- 3.4 Class (composite class) -- 3.5 Compression moulding -- 3.6 |
|
|
|
|
|
|
|
|
|
Consolidation -- 3.7 Contact moulding -- 3.8 Coupon -- 3.8.1 Coupons for tensile testing -- 3.8.2 Coupons for compressive testing -- 3.8.3 Coupons for double cantilever beam (DCB) testing -- 3.8.4 Coupons for flexural testing. |
3.8.5 Coupons for interlaminar shear strength (ILSS) testing -- 3.9 Crazing -- 3.10 Crimp -- 3.11 Cross ply laminates -- 3.12 Curing -- References -- Chapter 4 'D' -- 4.1 Damage models -- 4.1.1 Tsai-Hill -- 4.1.2 Tsai-Wu -- 4.1.3 Hashin -- 4.2 Defects -- 4.2.1 Blistering -- 4.2.2 Bonding defects and delamination -- 4.2.3 Fibre defects -- 4.2.4 Fibre misalignment -- 4.2.5 Foreign bodies -- 4.2.6 Voids -- 4.3 Draping and hot drape forming -- 4.4 Dry fibre material (prepreg) -- 4.4.1 Thermoset prepreg -- 4.4.2 General advantages of dry fibre material -- 4.4.3 Nanoengineered prepreg -- References -- Chapter 5 'E' -- 5.1 Ejection (demoulding) -- 5.2 Exotherm -- 5.3 Extrusion -- References -- Chapter 6 'F' -- 6.1 Fatigue -- 6.1.1 Fundamental parameters of importance -- 6.1.2 ε-N curves -- 6.1.3 Damage evolution -- 6.2 Filler -- 6.3 Flitch -- 6.4 Fracture: interlaminar (FRP) -- 6.4.1 Mode I: double cantilever beam (DCB) testing -- 6.4.2 Mode II: end notched flexure (ENF) testing -- 6.4.3 Mixed mode I and II: mixed-mode flexure (MMF) testing -- 6.4.4 Mode III: mixed-mode flexure (MMF) testing -- References -- Chapter 7 'G' -- 7.1 Gel coat -- 7.1.1 Gel coat material and lay-up -- 7.1.2 Comparison of manually applied and spray-coated gel coats -- 7.1.3 Gel coat defects and mitigation methods -- 7.2 Glass fibres -- 7.2.1 Manufacture of glass fibres -- 7.2.2 Characteristics of glass fibres -- 7.2.3 Properties of glass fibres -- 7.3 Glass transition -- 7.3.1 Heat capacity method-differential scanning calorimetry (DSC) -- 7.3.2 CTE method-thermomechanical analyser (TMA) -- 7.3.3 Modulus method-dynamic thermal mechanical analyser (DMTA) -- References -- Chapter 8 'H' -- 8.1 Halpin-Tsai model -- 8.2 Hygroscopy -- 8.2.1 Isotropic hygroscopy -- 8.2.2 Micromechanical CME calculations for unidirectional laminates. |
8.2.3 Micromechanical CME calculations for laminates containing orthohygroscopic fibres -- 8.2.4 Micromechanical CME calculations for laminates containing non-absorbing fibres -- 8.3 Hybrid composite -- Reference -- Chapter 9 'I' -- 9.1 Interlaminar shear -- 9.2 Interphase -- 9.2.1 Interphase influence on the Young's modulus -- 9.2.2 Interphase influence on strength -- References -- Chapter 10 'J' -- 10.1 Joining of metal matrix composites (MMCs) -- 10.1.1 Fusion welding: gas tungsten arc welding (GTAW) or tungsten inert gas (TIG) welding -- 10.1.2 Fusion welding: laser beam welding -- 10.1.3 Fusion welding: electron beam welding -- 10.1.4 Solid-state welding: friction welding -- 10.1.5 Solid-state welding: friction-stir welding -- 10.2 Joining -- 10.2.1 Butt joints -- 10.2.2 Corner joints -- 10.2.3 Hybrid joints -- 10.2.4 Lap-joints -- 10.2.5 Strap joints -- 10.2.6 T-joints -- 10.3 Joining of thermoplastic matrix composites -- 10.3.1 Ultrasonic welding -- 10.3.2 Induction welding -- 10.3.3 Resistance welding -- References -- Chapter 11 'K' -- 11.1 Kevlar -- 11.2 Knitted fabric composites -- References -- Chapter 12 'L' -- 12.1 Laminate theory -- Chapter 13 'M' -- 13.1 Mat -- 13.1.1 Structural/protective mats -- 13.1.2 Chopped strand mats (CSM) -- 13.1.3 Biomedical composite mats -- 13.2 Matrix -- 13.2.1 Carbon matrix -- 13.2.2 Ceramic matrix -- 13.2.3 Metal matrix -- 13.2.4 Polymer matrix -- References -- Chapter 14 'N' -- 14.1 Natural fibre composite (NFC) materials -- 14.2 Nanocomposites -- References -- Chapter 15 'O' -- 15.1 Orowan strengthening (MMCs) -- Reference -- Chapter 16 'P' -- 16.1 Physical vapour deposition (PVD) methods in MMCs -- 16.2 Piezoelectric composites -- 16.2.1 Piezoelectric charge constant, d -- 16.2.2 Piezoelectric voltage constant, g -- 16.2.3 Dielectric constant, ε. |
|
|
|
|
|
|
|
|
|
16.2.4 Connectivity of active-passive phases in piezoelectric composites -- 16.2.5 Effects of combining PZT with polymers on piezoelectric constants -- 16.3 Polymer impregnation and pyrolysis (PIP) in CMCs -- 16.4 Porous composites -- 16.4.1 Types of pores and their geometrical characteristics -- 16.4.2 Particle packing -- 16.4.3 Permeability -- 16.4.4 Elastic modulus predictions -- 16.5 Post-curing -- 16.5.1 Heat post-curing of polymer matrix composites -- 16.5.2 Light post-curing of polymer matrix composites -- 16.5.3 Microwave post-curing of polymer matrix composites -- 16.6 Preform -- 16.6.1 1D preforms -- 16.6.2 2D preforms -- 16.6.3 3D preforms -- 16.7 Pultrusion -- 16.8 Pyroelectric composites -- 16.8.1 Fundamental description -- 16.8.2 Heckmann diagram -- 16.8.3 Pyroelectric coefficient -- 16.8.4 Connectivity of active-passive phases in pyroelectric composites -- References -- Chapter 17 'Q' -- 17.1 Quadraxial non-crimp fabric -- 17.2 Quasi-isotropic laminate -- 17.3 Quench hardening (metal matrix composites) -- References -- Chapter 18 'R' -- 18.1 Reaction injection moulding (RIM) techniques in composites engineering -- 18.1.1 Reaction injection moulding (RIM) -- 18.1.2 Reinforced reaction injection moulding (RRIM) -- 18.1.3 Structural reaction injection moulding (SRIM) -- 18.2 Reactive melt infiltration (RMI) in CMCs -- 18.3 Recycling -- 18.3.1 Recycling of glass fibre reinforced plastics (GFRP) -- 18.3.2 Recycling of carbon fibre reinforced plastics (CFRP) -- 18.3.3 Recycling of metal matrix composites (MMC) -- 18.3.4 Recycling of reinforced concrete -- 18.3.5 Recycling of wood-based composites -- 18.4 Reinforcement -- 18.5 Resin transfer moulding (RTM) -- 18.6 Reinforced concrete -- 18.6.1 Steel reinforcements in concrete -- 18.6.2 Fibre reinforced plastic reinforcements in concrete -- 18.6.3 Fibre reinforcements in concrete. |
18.7 Rule of mixtures (ROM) -- 18.7.1 Elastic modulus of continuous fibre unidirectional composites loaded in the fibre axis -- 18.7.2 Elastic modulus of continuous fibre unidirectional composites loaded perpendicular to the fibre axis -- 18.7.3 Elastic modulus of short fibre composites -- 18.7.4 Elastic modulus of uniformly distributed particle reinforced non-porous composites -- 18.7.5 Strength of continuous fibre unidirectional composites loaded in the fibre axis -- 18.7.6 Strength of continuous fibre unidirectional composites loaded perpendicular to the fibre axis -- 18.7.7 Strength of short fibre composites -- 18.7.8 Strength of uniformly distributed particle reinforced non-porous composites -- References -- Chapter 19 'S' -- 19.1 Sandwich panels -- 19.1.1 Elastic beam theory for sandwich panels under three-point bending -- 19.1.2 Failure modes of sandwich panels -- 19.1.3 Relevant standards -- 19.2 Sizing -- 19.2.1 Applicator roll application of sizing to fibre surfaces -- 19.2.2 Fibre specific sizing -- 19.2.3 High temperature sizing -- 19.3 Slurry impregnation and hot processing of CMCs -- 19.4 Substructure/grain strengthening (MMCs) -- 19.4.1 Dislocation flow and strengthening by dislocation pile-up -- 19.4.2 Dispersion strengthening -- 19.4.3 Grain boundary strengthening -- References -- Chapter 20 'T' -- 20.1 Tri-axial non-crimp fabric -- Chapter 21 'U' -- 21.1 Unbalanced laminates -- References -- Chapter 22 'V' -- 22.1 Vacuum-assisted resin transfer moulding (VARTM) -- 22.2 Volatile organic compounds (VOCs) -- 22.3 Volume fraction -- 22.3.1 Image analysis -- 22.3.2 Solvent/acid digestion -- 22.3.3 Thermal decomposition (burn-offs) -- References -- Chapter 23 'W' -- 23.1 Wovens -- 23.1.1 2D woven -- 23.1.2 2.5D woven -- 23.1.3 3D woven -- 23.2 Wetting -- 23.3 Whiskers -- 23.4 Wood-based composites -- 23.4.1 Chipboard. |
23.4.2 Cross-laminated timber (CLT/X-lam). |
|
|
|
|
|
|
Sommario/riassunto |
|
Composites Engineering: An A-Z Guide provides a quick and accessible |
|
|
|
|
|
|
|
|
|
|
reference to composites terminologies. Comprehensive without being overly detailed, it fills a gap for an accessible reference text of composites engineering terms and concepts. It is ideal for composites scientists and engineers at universities and in industry, as well as undergraduates. |
|
|
|
|
|
| |