1.

Record Nr.

UNINA9910857794203321

Autore

Ahmed Shakeel

Titolo

Biobased Nanomaterials : Applications in Biomedicine, Food Industry, Agriculture, and Environmental Sustainability

Pubbl/distr/stampa

Singapore : , : Springer Singapore Pte. Limited, , 2024

©2024

ISBN

981-9705-42-8

Edizione

[1st ed.]

Descrizione fisica

1 online resource (535 pages)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Description -- Key Highlights -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Introduction, Synthesis and Characterization -- 1: Introduction to Biobased Nanomaterials -- 1.1  Introduction -- 1.2  Bionanomaterials -- 1.3  Classification and Synthesis Mechanisms of Bionanomaterials -- 1.3.1  Direct Bionanoparticle Synthesis -- 1.3.2  Indirect Bionanoparticle Synthesis -- 1.4  Approaches for Nanomaterial Synthesis -- 1.4.1  The Top-Down Approach -- 1.4.2  The Bottom-Up Approach -- 1.5  Application Areas of Bionanotechnology -- 1.6  Conclusions -- References -- 2: Types of Biobased Nanomaterials -- 2.1  Introduction -- 2.2  Sources of Biobased Nanomaterials -- 2.3  Biobased Nanomaterials -- 2.4  Types of Biobased Nanomaterials -- 2.4.1  Organic Nanomaterials -- 2.4.1.1  Micelles -- The Structure of Micelles -- Formation of Micelles -- Micelles: Their Uses and Functions -- 2.4.1.2  Dendrimers -- Dendrimer Structure and Chemistry -- Synthesis and Types of Dendrimers -- Dendrimer Characteristics -- Applications of Dendrimers -- 2.4.1.3  Polymersomes -- 2.4.1.4  Hydrogels -- 2.4.1.5  Nanoconjugates -- 2.4.1.6  Cyclodextrins (CDs) -- 2.4.1.7  Liposomes -- 2.4.2  Inorganic Nanomaterials -- 2.4.2.1  Metal-Based Inorganic Nanomaterials -- 2.4.2.2  Metal Oxide-Based Inorganic Nanomaterials -- 2.4.2.3  Ceramic Nanomaterials (CNPs) -- 2.4.3  Compound-Based Nanomaterials -- 2.4.4  Carbon-Based Nanomaterials -- 2.4.4.1  



Graphene -- 2.4.4.2  Fullerenes -- Properties of Fullerenes -- Varieties of Fullerenes -- 2.4.4.3  Single-Walled Carbon Nanotubes -- 2.4.4.4  Multiwalled Carbon Nanotubes -- 2.5  Conclusions -- References -- 3: Synthesis of Bionanomaterials Using Different Extracts -- 3.1  Introduction -- 3.1.1  The Top-Down Approach -- 3.1.2  The Bottom-Up Approach -- 3.2  Green Synthesis of Nanomaterials.

3.2.1  Plant Extracts -- 3.2.2  Microorganisms -- 3.2.3  Bacteria -- 3.2.4  Fungi -- 3.2.5  Biomolecules -- 3.2.6  Algae -- 3.3  Conclusions -- References -- 4: Physiochemical Characterization Technique of Bionanomaterials -- 4.1  Introduction -- 4.2  Summary of the Physical and Chemical Traits of NMs -- 4.2.1  Size -- 4.2.2  Surface-Specific Features -- 4.2.3  Configuration -- 4.2.4  Composition and Purity -- 4.2.5  The Degree of Stability -- 4.2.6  Relationship Between Nanomaterials and Their Biological Environments -- 4.3  Microscopy-Based Technique -- 4.3.1  Near-Field Scanning Optical Microscopy (NSOM) -- 4.3.2  Scanning Electron Microscopy (SEM) -- 4.3.3  Transmission Electron Microscopy (TEM) -- 4.3.4  Scanning Tunnelling Microscopy (STM) -- 4.3.5  Atomic Force Microscopy (AFM) -- 4.4  Radiation-Based Technique -- 4.4.1  Dynamic Light Scattering (DLS) -- 4.4.2  X-Ray Diffraction (XRD) -- 4.4.3  Small-Angle X-Ray Scattering (SAXS) -- 4.4.4  Raman Scattering (RS) -- 4.4.5  Circular Dichroism (CD) -- 4.5  Spectroscopy-Based Technique -- 4.5.1  Infrared (IR) Spectroscopy -- 4.5.2  Nuclear Magnetic Resonance (NMR) -- 4.5.3  Mass Spectrometry (MS) -- 4.5.4  Fluorescence Correlation Spectroscopy (FCS) -- 4.5.5  Fluorescence Spectroscopy (FS) -- 4.6  Chromatography-Based Technique -- 4.6.1  High-Performance Liquid Chromatography (HPLC) -- 4.6.2  Hydrodynamic Chromatography (HDC) -- 4.6.3  Field-Flow Fractionation (FFF) -- 4.7  Other Techniques -- 4.7.1  Zeta Potential -- 4.7.2  Nanomaterial Tracking Analysis (NTA) -- 4.7.3  The Brunauer-Emmett-Teller (BET) Method -- 4.7.4  The Barrett-Joyner-Halenda (BJH) Method -- 4.7.5  Analytical Ultracentrifugation (AUC) -- 4.7.6  High-Angle Annular Dark-Field (HAADF) Imaging -- 4.7.7  Polarized Optical Microscopy (POM) -- 4.8  Conclusions -- References -- Part II: Biobased Nanomaterials in Biomedical Applications.

5: Revolutionizing Regeneration: Bio-Based Nanomaterials in Tissue Engineering -- 5.1  Introduction -- 5.2  Properties or Requirements of Bio-Based Nanoscaffold for Tissue Engineering -- 5.2.1  Microarchitecture -- 5.2.2  Biocompatibility -- 5.2.3  Biodegradability -- 5.2.4  Mechanical Properties -- 5.2.5  Bioactivity -- 5.3  Biomaterials Used for Developing the Nanoscaffold -- 5.3.1  Cellulose -- 5.3.2  Alginate -- 5.3.3  Chitin and Chitosan -- 5.3.4  Hyaluronic Acid -- 5.3.5  Starch -- 5.3.6  Collagen -- 5.3.7  Keratin -- 5.3.8  Elastin -- 5.3.9  Fibrin -- 5.3.10  Gelatin -- 5.4  Bio-Based Nanomaterials Fabrication Techniques -- 5.4.1  Solvent Casting and Particle Leaching -- 5.4.2  Electrospinning -- 5.4.3  Thermal-Induced Phase Separation Method -- 5.4.4  Freeze Drying -- 5.4.5  Gas Foaming -- 5.4.6  Selective Laser Sintering -- 5.4.7  Solvent-Based Extrusion 3D Printing Method -- 5.4.8  Stereolithography -- 5.4.9  Bioprinting Method -- 5.4.10  Aerosol Jet Printing -- 5.5  Applications of Bio-Based Nanomaterials for Tissue Engineering -- 5.5.1  Bone Tissue Engineering -- 5.5.2  Cardiac Tissue Engineering -- 5.5.3  Skeletal Muscle Tissue Engineering -- 5.5.4  Skin Tissue Engineering -- 5.5.5  Nervous Tissue Engineering -- 5.6  Conclusions -- References -- 6: Biobased Nanomaterials in Biomedical Applications -- 6.1  Introduction -- 6.1.1  Importance of Nanotechnology in Biomedical Application -- 6.2  Synthesis and Characterization of Biobased Nanomaterials -- 6.2.1  Green Synthesis of Biobased Nanoparticles --



6.2.2  Characterization Techniques for Biobased Nanomaterials -- 6.2.2.1  Nanoparticle Formation Analysis -- 6.2.2.2  Nanoparticle Extraction Analysis -- 6.2.2.3  Morphology and Particle Size Determination -- 6.2.2.4  Surface Charge Analysis -- 6.2.2.5  XPS -- 6.2.2.6  FT-IR Spectroscopy -- 6.2.2.7  Zeta Sizer Nanomachine -- 6.2.2.8  TGA.

6.2.2.9  Surface Hydrophobicity Assessment -- 6.2.2.10  Analysis of Nanoparticle Magnetic Properties -- 6.2.3  Biocompatibility and Safety Considerations -- 6.3  Biobased Nanomaterials for Drug Delivery -- 6.3.1  Nanocarriers for Drug Encapsulation -- 6.3.2  Targeted Drug Delivery Systems -- 6.3.3  Controlled Release Strategies -- 6.3.4  Overcoming Biological Barriers with Biobased Nanomaterials -- 6.4  Biobased Nanomaterials in Diagnostics and Imaging -- 6.4.1  Nanoprobes for Imaging and Sensing -- 6.4.2  Contrast Agents for Biomedical Imaging -- 6.4.3  Biosensors and Point-of-Care Devices -- 6.5  Biobased Nanomaterials for Tissue Engineering and Regenerative Medicine -- 6.5.1  Key Elements of Tissue Engineering -- 6.5.2  Nanomaterials for Scaffold Design -- 6.5.2.1  Microarchitecture -- 6.5.2.2  Biodegradability -- 6.5.2.3  Biocompatibility -- 6.5.2.4  Bioactivity -- 6.5.3  Cellular Interaction and Biocompatibility -- 6.6  Biobased Nanomaterials in Cancer Therapy -- 6.6.1  Nanoparticles for Cancer Diagnosis -- 6.6.2  Targeted Therapies Using Biobased Nanomaterials -- 6.6.3  Nanoparticle-Mediated Photothermal and Photodynamic Therapy -- 6.7  Biobased Nanomaterials for Wound Healing and Infection Control -- 6.7.1  Nanofibers and Dressings -- 6.7.1.1  Semipermeable Film Dressings -- 6.7.1.2  Semipermeable Foam Dressings -- 6.7.2  Antimicrobial Nanoparticles -- 6.7.3  Bioactive Coatings and Films -- 6.8  Biobased Nanomaterials in Dental Applications -- 6.8.1  Nanocomposites for Dental Restorations -- 6.8.2  Nanoparticles for Oral Drug Delivery -- 6.8.3  Nanomaterials for Periodontal Treatment -- 6.9  Biobased Nanomaterials for Neurological Disorders -- 6.9.1  Nanotherapeutics for Brain Delivery -- 6.9.2  Nanosensors and Neural Interfaces -- 6.9.3  Neuro-regeneration with Biobased Nanomaterials.

6.10  Regulatory and Ethical Considerations in Biobased Nanomaterials -- 6.10.1  Safety and Toxicity Assessment -- 6.10.2  Environmental Impact -- 6.10.3  Ethical Issues in Nanomedicine -- 6.11  Future Perspectives and Challenge -- 6.11.1  Emerging Trends in Biobased Nanomaterials -- 6.11.2  Potential Clinical Translations -- 6.11.3  Addressing Key Challenges in Biomedical Applications -- 6.12  Conclusion -- References -- 7: Biobased Nanomaterials in Drug Delivery -- 7.1  Introduction -- 7.2  What Is Nanomaterial? -- 7.2.1  Usage Areas of Nanomaterials -- 7.2.1.1  Food Industry -- 7.2.1.2  Cancer Treatment -- 7.2.1.3  Tissue Engineering -- 7.3  What Is Biobased Nanomaterial? -- 7.4  Sources of Biobased Nanomaterials -- 7.4.1  Polysaccharides -- 7.4.2  Polymers Used in Controlled Drug Release Systems -- 7.4.3  Chitosan -- 7.5  Drug Delivery -- 7.6  Biobased Nanomaterials Used in Drug Delivery -- 7.6.1  Chitin -- 7.6.2  Chitosan (CS) -- 7.6.2.1  Chitosan-Clay Bionanocomposites Applications in Drug Delivery -- 7.6.2.2  Chitosan Bionanocomposites for Controlled Release Applications -- 7.6.3  Cellulose -- 7.6.4  Carbon-Based Nanomaterials -- 7.6.5  Starch -- 7.6.6  Plant Proteins -- 7.6.7  Phage in Drug Delivery -- 7.7  Drug Delivery and Cancer -- 7.8  Drug Delivery and Other Diseases -- 7.9  Conclusion -- References -- 8: Biobased Nanomaterials in Regenerative Medicines -- 8.1  Introduction -- 8.2  Scaffolds Bionanocomposites as Regenerative Medicines -- 8.3  Bioactive Glasses Bionanocomposites as Regenerative Medicines -- 8.4  Natural Polymers Bionanocomposites as Regenerative



Medicines -- 8.5  Drawback of Natural Polymers Bionanocomposites as Regenerative Medicines -- 8.6  Composites Bionanocomposites as Regenerative Medicines -- 8.7  Chitin Bionanocomposites as Regenerative Medicines -- 8.8  Chitin Scaffolds Bionanocomposites as Regenerative Medicines.

8.9  Bone Bionanocomposites as Regenerative Medicines.