1.

Record Nr.

UNIPARTHENOPE000006998

Autore

Rodriguez Devesa, José Maria

Titolo

Derecho penal español / José Maria Rodriguez Devesa, Alfonso Serrano Gomez

Pubbl/distr/stampa

Madrid : Dykinson, 1995

ISBN

84-8155-113-9

84-8155-100-7

Edizione

[18. ed.]

Descrizione fisica

2 v. ; 24 cm

Altri autori (Persone)

Serrano Gómez, Alfonso

Disciplina

345.46

Collocazione

R-0051

R-0052

Lingua di pubblicazione

Spagnolo

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

1.: Parte general 2.: Parte especial



2.

Record Nr.

UNINA9910842097003321

Autore

Breiding Paul

Titolo

Metric Algebraic Geometry / / by Paul Breiding, Kathlén Kohn, Bernd Sturmfels

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024

ISBN

3-031-51462-9

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (225 pages)

Collana

Oberwolfach Seminars, , 2296-5041 ; ; 53

Altri autori (Persone)

KohnKathlén

SturmfelsBernd

Disciplina

516.35

Soggetti

Geometry, Algebraic

Geometry, Differential

Artificial intelligence - Data processing

Numerical analysis

Algebraic Geometry

Differential Geometry

Data Science

Numerical Analysis

Geometria algebraica

Congressos

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preface -- Historical Snapshot -- Critical Equations -- Computations -- Polar Degrees -- Wasserstein Distance -- Curvature -- Reach and Offset -- Voronoi Cells -- Condition Numbers -- Machine Learning -- Maximum Likelihood -- Tensors -- Computer Vision -- Volumes of Semialgebraic Sets -- Sampling -- References.

Sommario/riassunto

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over



the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety. This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an open access book.