1.

Record Nr.

UNINA9910841714503321

Autore

Waghmare Roji Balaji

Titolo

Freeze Drying of Food Products : Fundamentals, Processes and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-119-98207-3

1-119-98209-X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (307 pages)

Altri autori (Persone)

KumarManoj

PanesarParmjit Singh

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Freeze-Drying: Basic Principles and Processes -- 1.1 Introduction -- 1.2 Principle of FD Process -- 1.2.1 Freezing of Raw Material -- 1.2.2 Primary Drying - Sublimation -- 1.2.3 Second Drying - Desorption -- 1.3 Basic Components of a Typical Freeze-Dryer System -- 1.4 Types of FD Processes -- 1.4.1 Vacuum FD -- 1.4.2 Atmospheric FD -- 1.4.3 Spray FD -- 1.5 Characterization of FD Samples -- 1.5.1 Color -- 1.5.2 Moisture -- 1.5.3 Scanning Electron Microscopy -- 1.5.4 Thermal Analysis -- 1.5.5 Rehydration Characteristics -- 1.6 Applications of FD in Food Processing -- 1.6.1 Fresh Produce -- 1.6.2 Animal Products -- 1.6.3 Dairy Products -- 1.6.4 Miscellaneous Applications -- 1.7 Advantages of FD -- 1.8 Limitations of FD -- 1.9 Commercial Status -- 1.9.1 Technological Applications in Food -- 1.10 Conclusion and Future Perspectives -- References -- Chapter 2 Mathematical Modeling of Freeze-Drying Process -- 2.1 Introduction -- 2.2 Principle of Freeze-Dryer -- 2.2.1 Vacuum Freeze-Drying -- 2.2.2 Atmospheric Freeze-Drying -- 2.2.3 Water Vapor Transfer in Freeze-Dryer -- 2.3 Mathematical Model for Freezing -- 2.3.1 Thermal Balance during Freezing -- 2.3.2 Examples of Simulation Results -- 2.4 Mathematical Expression of the Progress of Freeze-Drying -- 2.4.1 Primary Drying --



2.4.2 Secondary Drying -- 2.4.3 Practical Approach for Modeling of Freeze-Drying -- 2.5 One-Dimensional Model (Rp-Kv Model) -- 2.6 Three-Dimensional Model (Kcc Model) -- 2.6.1 Case Classification of Freeze-Drying under Radiative Heat -- 2.6.2 Radiative Heat to Product -- 2.6.3 Radiative Heat to Tray -- 2.6.4 Conductive Heat Transfer in the Frozen and Dried Layers -- 2.6.5 Three-Dimensional Model (Kcc Model) - Water Vapor Transfer.

2.6.6 Parameter Estimation by Ice Sublimation Test -- 2.6.7 Estimation of Essential Surface Area -- 2.6.8 Simulation Result Example -- 2.7 Conclusion -- References -- Chapter 3 Freeze Drying of Fruits and Vegetables -- 3.1 Introduction -- 3.2 Physical Characteristics of Freeze-Dried Fruits and Vegetables -- 3.2.1 Color -- 3.2.2 Shrinkage -- 3.2.3 Rehydration Capacity -- 3.2.4 Microstructure -- 3.3 Biochemical Characteristics of Freeze-dried Fruits and Vegetables -- 3.3.1 Antioxidant Activity -- 3.3.2 Polyphenols -- 3.3.3 Ascorbic Acid -- 3.4 Freeze Drying for Encapsulation -- 3.5 Applications of Freeze-dried Fruits and Vegetables -- 3.6 Advantages and Disadvantages of Freeze Drying -- 3.7 Conclusion -- References -- Chapter 4 Freeze-Drying of Meat and Seafood Products -- 4.1 Introduction -- 4.2 Principles of Freeze-Drying Technology -- 4.3 Effect of Freeze-Drying on the Sensory Attributes of Meat and Seafood Products -- 4.3.1 The Challenge of Imitating Fresh Meat -- 4.3.2 The High Opportunities of Freeze-Drying in Seafood -- 4.4 Stability of Freeze-Dried Meat and Seafood Products -- 4.4.1 Advantages and Disadvantages in the Preservation of Meat by Freeze-Drying -- 4.4.2 Suitability of Freeze-Drying to Stabilize Seafood Products -- 4.5 Conclusions -- Acknowledgments -- References -- Chapter 5 Freeze-Drying of Dairy Products -- 5.1 Introduction -- 5.2 Application of Freeze-Drying in Different Dairy Products/Ingredients -- 5.2.1 Milk -- 5.2.2 Cheese -- 5.2.3 Yogurt -- 5.3 Application of Freeze-Drying of Other Dairy Products -- 5.3.1 Lactic Acid and Other Cultures -- 5.3.2 Application of Freeze-Drying on Colostrum -- 5.3.3 Application of Freeze-Drying on Lactoferrin -- 5.4 Spray Freeze-Drying -- 5.4.1 Parameter of Spray Freeze-Drying -- 5.5 Advanced Freeze-Drying Methods -- 5.5.1 Infrared Freeze-Drying -- 5.5.2 High-Pressure Freeze-Drying.

5.5.3 Microwave Freeze-Drying (MWFD) -- 5.6 Conclusion -- References -- Chapter 6 Freeze-Drying of Probiotics for the Incorporation in Functional Foods: Drying Process, Viability, and Powder Properties -- 6.1 Introduction -- 6.2 Functional Foods -- 6.3 Cultivation and FD of Probiotics -- 6.4 Protection of Probiotics During FD -- 6.5 Stability and Viability Assessment After FD -- 6.5.1 Factors Affecting Survival and Stability -- 6.5.2 Protective Agents to Improve Viability -- 6.6 Properties of Freeze-Dried Probiotic Powders -- 6.6.1 Comparison of Spray-Dried and Freeze-Dried Probiotic Powders -- 6.7 Rehydration of Freeze-Dried Probiotics -- 6.8 Conclusion and Future Trends -- References -- Chapter 7 Freeze-Drying Effect on Nutrients and Their Stability -- 7.1 Introduction -- 7.1.1 Food Quality Changes During Drying of Food -- 7.1.2 Freezing Process -- 7.1.3 Combined Application of Different Freeze-Drying Methods -- 7.2 Vitamin -- 7.3 Minerals -- 7.3.1 Microminerals -- 7.3.2 Macro-minerals -- 7.4 Bioactive Compounds -- 7.4.1 Antioxidant Activity -- 7.4.2 Anthocyanin -- 7.4.3 Carotenoids -- 7.5 Future Perspective -- 7.6 Conclusion -- References -- Chapter 8 Packaging of Freeze-Dried Products -- 8.1 Introduction -- 8.2 History of Freeze-Dried Foods -- 8.3 Industrial Process of Freeze Drying -- 8.3.1 Pre-Treatment Methods of Various Foods Before Freeze-Drying -- 8.4 Need for Good Packaging for Freeze-Dried Food Products -- 8.4.1 Microbial Quality -- 8.4.2 Chemical Quality -- 8.4.3 Nutritional Quality -- 8.4.4 Influence



of Storage Quality -- 8.5 Selection of Packaging Material -- 8.5.1 Water Vapor Transmission Rate (WVTR) -- 8.5.2 Gas Transmission Rate -- 8.5.3 Tensile Strength and Elongation -- 8.5.4 Tear Strength -- 8.5.5 Heat Seal Strength -- 8.5.6 Performance Properties -- 8.6 Types of Packaging for Freeze-Dried Foods.

8.6.1 Modified Atmosphere Packaging (MAP) -- 8.6.2 Flexible Packaging -- 8.6.3 Shrink Film -- 8.6.4 Cardboard Packaging -- 8.6.5 Wax-Coated Cardboard -- 8.6.6 Edible Films -- 8.6.7 Cans and Glass Jars -- 8.7 Quality Consideration During Packaging -- 8.8 Case Studies of the Packaging of Freeze-Dried Food Products -- 8.8.1 Packaging of Strawberries -- 8.8.2 Packaging of Sour Cherries -- 8.9 Market Scenario -- 8.9.1 Asia-Pacific -- 8.9.2 European Market -- 8.9.3 Freeze-Dried Food Market: Recent Developments -- 8.10 Sustainability Aspects -- 8.11 Safety Aspects of Freeze-Dried Product Packaging -- 8.12 Principal Instrumental Techniques Employed for Packaging Controls -- 8.12.1 Spectrophotometry -- 8.12.2 Thermal Analysis Techniques -- 8.12.3 Gas Transmission Analysis -- 8.13 Conclusion and Future Scope -- References -- Chapter 9 Advances in Freeze Drying to Improve Efficiency and Maintain Quality of Dehydrated Fruit and Vegetable Products -- 9.1 Introduction -- 9.2 Challenges in Freeze Drying -- 9.2.1 Enhancement of Drying Kinetics -- 9.2.2 Energy Intensity Reduction -- 9.2.3 Scale-Up and Technical Transfer -- 9.3 Novel Freeze Drying Systems -- 9.3.1 Infrared-Assisted Freeze Drying -- 9.3.2 Microwave-Assisted Freeze Drying -- 9.3.3 Ultrasound-Assisted Freeze Drying -- 9.4 Conclusion and Future Prospects -- References -- Chapter 10 Commercial Applications of Freeze Drying in Food Processing -- 10.1 Introduction -- 10.2 Commercial Applications of Freeze-Dried Products -- 10.2.1 Food Industry -- 10.2.2 Dairy Industry -- 10.2.3 Other Industry -- 10.3 Cost Analysis of Freeze-Dried Food Products -- 10.4 Industries Freeze-Drying Operation -- 10.4.1 Pretreatments -- 10.4.2 Freezing -- 10.4.3 Primary Drying -- 10.4.4 Secondary Drying -- 10.4.5 Factors Affecting the Quality and Uniformity of Freeze-Dried Products -- 10.5 Industrial Freeze-Drying Device.

10.5.1 Air Blast Freezer -- 10.5.2 Fluidized Bed Freezers -- 10.5.3 Contact Freezer -- 10.5.4 Immersion Freezer -- 10.5.5 Plate Freezer -- 10.5.6 Cryogenic Freezers -- 10.6 Future Prospects -- 10.7 Conclusions -- References -- Index -- EULA.