1.

Record Nr.

UNINA9910831173503321

Autore

Dimitriadis Grigorios <1972->

Titolo

Unsteady aerodynamics : potential and vortex methods / / Grigorios Dimitriadis

Pubbl/distr/stampa

Chichester, England : , : John Wiley & Sons Ltd, , [2024]

©2024

ISBN

1-119-76256-1

1-119-76253-7

Edizione

[First edition.]

Descrizione fisica

1 online resource (579 pages)

Collana

Aerospace series

Disciplina

629.1323

Soggetti

Unsteady flow (Aerodynamics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Why Potential and Vortex Methods? -- 1.2 Outline of This Book -- References -- Chapter 2 Unsteady Flow Fundamentals -- 2.1 Introduction -- 2.2 From Navier-Stokes to Unsteady Incompressible Potential Flow -- 2.2.1 Irrotational Flow -- 2.2.2 Laplace's and Bernoulli's Equations -- 2.2.3 Motion in an Incompressible, Inviscid, Irrotational Fluid -- 2.3 Incompressible Potential Flow Solutions -- 2.3.1 Green's Third Identity -- 2.3.2 Solutions in Two Dimensions -- 2.4 From Navier-Stokes to Unsteady Compressible Potential Flow -- 2.4.1 The Compressible Bernoulli Equation -- 2.4.2 The Full Potential Equation -- 2.4.3 The Transonic Small Disturbance Equation -- 2.4.4 The Linearised Small Disturbance Equation -- 2.4.5 The Compressible Unsteady Pressure Coefficient -- 2.4.6 Motion in a Compressible, Inviscid, Irrotational Fluid -- 2.5 Subsonic Linearised Potential Flow Solutions -- 2.6 Supersonic Linearised Potential Flow Solutions -- 2.7 Vorticity and Circulation -- 2.7.1 Solutions of the Vorticity Transport Equations -- 2.7.2 Vorticity‐Moment and Kutta-Joukowski Theorems -- 2.7.3 The Wake and the Kutta Condition -- 2.8 Concluding Remarks -- References -- Chapter 3 Analytical Incompressible 2D Models -- 3.1 Introduction -- 3.2 Steady Thin Airfoil Theory -- 3.3 Fundamentals of Wagner and Theodorsen Theory -- 3.3.1 Flow Induced by the Source Distribution -- 3.3.2 Flow



Induced by the Vortex Distribution -- 3.3.3 Imposing the Impermeability Boundary Condition -- 3.3.4 Calculating the Loads Due to the Source Distribution -- 3.3.5 Imposing the Kutta Condition -- 3.4 Wagner Theory -- 3.4.1 The Wagner Function -- 3.4.2 Drag and Thrust -- 3.4.3 General Motion -- 3.4.4 Total Loads -- 3.4.5 Quasi‐Steady Aerodynamics -- 3.5 Theodorsen Theory.

3.5.1 Theodorsen's Function -- 3.5.2 Total Loads for Sinusoidal Motion -- 3.5.3 General Motion -- 3.6 Finite State Theory -- 3.6.1 Glauert Expansions -- 3.6.2 Solution of the Impermeability Equation -- 3.6.3 Completing the Equations -- 3.6.4 Kutta Condition and Aerodynamic Loads -- 3.7 Concluding Remarks -- 3.8 Exercises -- References -- Chapter 4 Numerical Incompressible 2D Models -- 4.1 Introduction -- 4.2 Lumped Vortex Method -- 4.2.1 Unsteady Flows -- 4.2.2 Free Wakes -- 4.3 Gust Encounters -- 4.3.1 Pitching and Plunging Wings -- 4.4 Frequency Domain Formulation of the Lumped Vortex Method -- 4.5 Source and Vortex Panel Method -- 4.5.1 Impulsively Started Flow -- 4.5.2 Thrust and Propulsive Efficiency -- 4.6 Theodorsen's Function and Wake Shape -- 4.7 Steady and Unsteady Kutta Conditions -- 4.7.1 The Unsteady Kutta Condition -- 4.8 Concluding Remarks -- 4.9 Exercises -- References -- Chapter 5 Finite Wings -- 5.1 Introduction -- 5.1.1 Rigid Wings and Flexible Wings -- 5.2 Finite Wings in Steady Flow -- 5.3 The Impulsively Started Elliptical Wing -- 5.3.1 The Solution by Jones -- 5.3.2 Unsteady Lifting Line Solution -- 5.4 The Unsteady Vortex Lattice Method -- 5.4.1 Impulsive Start of an Elliptical Wing -- 5.4.2 Other Planforms -- 5.5 Rigid Harmonic Motion -- 5.5.1 Longitudinal Harmonic Motion -- 5.5.2 Frequency Domain Load Calculations -- 5.5.3 Lateral Harmonic Motion -- 5.5.4 Aerodynamic Stability Derivatives -- 5.6 The 3D Source and Doublet Panel Method -- 5.7 Flexible Motion -- 5.7.1 Source and Doublet Panel Method in the Frequency Domain -- 5.8 Concluding Remarks -- 5.9 Exercises -- References -- Chapter 6 Unsteady Compressible Flow -- 6.1 Introduction -- 6.2 Steady Subsonic Potential Flow -- 6.3 Unsteady Subsonic Potential Flow -- 6.3.1 The Doublet Lattice Method -- 6.3.2 Unsteady 3D Subsonic Source and Doublet Panel Method.

6.3.3 Steady Correction of the Doublet Lattice Method -- 6.3.4 Unsteady 2D Subsonic Source and Doublet Panel Method -- 6.4 Unsteady Supersonic Potential Flow -- 6.4.1 The Mach Box Method -- 6.4.2 The Mach Panel Method -- 6.5 Transonic Flow -- 6.5.1 Steady Transonic Flow -- 6.5.2 Time Linearised Transonic Small Perturbation Equation -- 6.5.3 Unsteady Transonic Correction Methods -- 6.6 Concluding Remarks -- 6.7 Exercises -- References -- Chapter 7 Viscous Flow -- 7.1 Introduction -- 7.1.1 Steady Flow Separation Mechanisms -- 7.1.2 Dynamic Stall -- 7.2 Impulsively Started Flow around a 2D Flat Plate at High Angles of Attack -- 7.2.1 Flow Separation Criteria -- 7.3 Flow Around a 2D Circular Cylinder -- 7.3.1 The Discrete Vortex Method for Bluff Bodies -- 7.3.2 Modelling the Flow Past a Circular Cylinder Using the DVM -- 7.4 Flow Past 2D Rectangular Cylinders -- 7.4.1 Modelling the Flow Past Rectangular Cylinders Using the DVM -- 7.5 Concluding Remarks -- 7.6 Exercises -- References -- A Fundamental Solutions of Laplace's Equation -- A.1 The 2D Point Source -- A.2 The 2D Point Vortex -- A.3 The Source Line Panel -- A.4 The Vortex Line Panel -- A.5 The Horseshoe Vortex -- A.6 The Vortex Line Segment -- A.7 The Vortex Ring -- A.8 The 3D Point Source -- A.9 The 3D Point Doublet -- A.10 The Source Surface Panel -- A.11 The Doublet Surface Panel -- References -- B Fundamental Solutions of the Linearized Small Disturbance Equation -- B.1 The Subsonic Doublet Surface Panel -- B.2 The Acoustic Source Surface Panel -- B.3 The Acoustic Doublet Surface Panel -- B.4 The Supersonic



Source Surface Panel -- References -- C Wagner's Derivation of the Kutta Condition -- Reference -- Index -- EULA.