|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830973503321 |
|
|
Autore |
Fleming Thomas R |
|
|
Titolo |
Counting processes and survival analysis [[electronic resource] /] / Thomas R. Fleming, David P. Harrington |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley-Interscience, 2005 |
|
|
|
|
|
|
|
ISBN |
|
1-283-33236-1 |
9786613332363 |
1-118-15067-8 |
1-118-15066-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (454 p.) |
|
|
|
|
|
|
Collana |
|
Wiley series in probability and statistics |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Point processes |
Failure time data analysis |
Martingales (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
2.4 Stochastic Integrals with Respect to Local Martingales2.5 Continuous Compensators; 2.6 Compensators with Discontinuities; 2.7 Summary; 2.8 Bibliographic Notes; 3. Finite Sample Moments and Large Sample Consistency of Tests and Estimators; 3.1 Introduction; 3.2 Nonparametric Estimation of the Survival Distribution; 3.3 Some Finite Sample Properties of Linear Rank Statistics; 3.4 Consistency of the Kaplan-Meier Estimator; 3.5 Bibliographic Notes; 4. Censored Data Regression Models and Their Application; 4.1 Introduction; 4.2 The Proportional Hazards and Multiplicative Intensity Models |
4.3 Partial Likelihood Inference4.4 Applications of Partial Likelihood Methods; 4.5 Martingale Residuals; 4.6 Applications of Residual Methods; 4.7 Bibliographic Notes; 5. Martingale Central Limit Theorem; 5.1 Preliminaries and Motivation; 5.2 Convergence of Martingale Difference Arrays; 5.3 Weak Convergence of the Process, U(n); 5.4 Bibliographic Notes; 6. Large Sample Results of the Kaplan-Meier Estimator; 6.1 Introduction; 6.2 A Large Sample Result for Kaplan-Meier |
|
|
|
|