| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830783203321 |
|
|
Autore |
Young Brent R. |
|
|
Titolo |
A real-time approach to distillation process control / / Brent R. Young, Michael A. Taube, Isuru A. Udugama |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : Wiley, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-394-18594-4 |
1-119-66924-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (258 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Distillation |
Chemical process control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- About the Companion Website -- Chapter 1 Introduction -- 1.1 The Purpose of Process Control -- 1.2 Introduction to Distillation -- 1.3 Distillation Process Control -- 1.4 A Real-Time Approach to Distillation Process Control Education -- Tutorial and Self Study Questions -- References -- Chapter 2 Fundamentals of Distillation Control -- 2.1 Mass and Energy Balance: The Only Means to Affect Distillation Tower's Behavior -- 2.2 Control Design Procedure -- 2.3 Degrees of Freedom -- 2.4 Pairing -- 2.5 Gain Analysis -- 2.6 Common Control Configuration -- 2.7 Screening Control Strategies via Steady-State Simulation -- Tutorial and Self-Study Questions -- References -- Chapter 3 Control Hardware -- 3.1 Introduction -- 3.2 Control Hardware Overview -- 3.3 Sensors -- 3.3.1 Process Considerations -- 3.3.2 Flow Measurement Devices -- 3.3.3 Pressure Measurement Devices -- 3.3.4 Level Measurement Devices -- 3.3.5 Temperature Measurement Devices -- 3.3.6 Direct Composition Measurements -- 3.3.7 Maintenance -- 3.4 Final Control Elements -- 3.4.1 Linearity -- 3.4.2 Time Constant and Failure Mode -- 3.4.3 Mechanical Design Considerations -- 3.5 Controllers/CPU -- 3.5.1 Level 0 -- 3.5.2 Level 1 -- 3.5.3 Levels 2 and 3 -- 3.5.4 General Set Up and Considerations -- 3.6 Modern Trends -- 3.6.1 Wireless Communication and Smart |
|
|
|
|
|
|
|
|
|
|
|
Devices -- 3.6.2 Smart CPUs -- 3.6.3 Digital Twins -- Tutorial and Self-Study Questions -- References -- Chapter 4 Inventory Control -- 4.1 Pressure Control -- 4.1.1 Total Condenser -- 4.1.2 Flooded Condensers -- 4.1.3 Sub-Cooled Reflux -- 4.1.4 Partial Condenser -- 4.2 Level Control -- 4.2.1 Surge Capacity Control -- 4.2.2 Open-Loop Stable versus Integrating Processes -- 4.2.3 Calculating the Process Gain for Vessel Levels. |
4.2.4 Relative Gain Analysis, aka Closing the Loop in Plant Design -- Tutorial and Self-Study Questions -- References -- Chapter 5 Distillation Composition Control -- 5.1 Temperature Control -- 5.1.1 Setting Up a Single Temperature-Based Composition Controller -- 5.1.2 When Temperature Is Like an Integrating Process -- 5.1.3 Reboiler Outlet Temperature Controls -- 5.2 Actual Composition Control -- 5.3 More Complex Control Configurations -- 5.3.1 Ryskamp's Scheme -- 5.3.2 Dual Composition Control -- 5.4 Distillation Control Scheme Design Using Steady-State Models -- 5.5 Performance Analysis Using Steady-State Data for an Existing Distillation Tower -- 5.6 Distillation Control Scheme Design Using Dynamic Models -- Tutorial and Self-Study Questions -- References -- Chapter 6 Refinery Versus Chemical Plant Distillation Operations -- 6.1 New Generation of Refinery Controls -- 6.1.1 Atmospheric and Vacuum Refining Columns -- 6.2 Improving Thermodynamic Efficiency Through Control -- 6.3 Blending and Its Implications on Control -- Tutorial and Self-Study Questions -- References -- Chapter 7 Distillation Controller Tuning -- 7.1 Model Identification: Step Testing -- 7.2 Typical Process Responses -- 7.3 Engineering Units Versus Percent-of-Scale -- 7.4 Basics in PID Tuning -- 7.5 Tuning in Distillation Control -- 7.6 The Role of Tuning in a "Value Engineering" Era -- Tutorial and Self-Study Questions -- References -- Chapter 8 Fine and Specialty Chemicals Distillation Control -- 8.1 Key Features -- 8.2 Measurement and Control Challenges -- 8.3 Nuances of Fine Chemicals Distillation -- 8.4 Side-Draw Distillation -- 8.5 Composition Control in High-Purity Side-Draw Distillation -- 8.6 Advanced Distillation Column Configurations -- 8.7 Petlyuk and Divided Wall Columns -- 8.8 Optimal Design Versus Optimal Operations -- 8.9 Conclusions. |
Tutorial and Self-Study Questions -- References -- Chapter 9 Advanced Regulatory Control -- 9.1 Introduction -- 9.2 Cascade Control -- 9.2.1 Cascade Control in Distillation -- 9.2.2 Inferential Cascade Control -- 9.3 Ratio Control -- 9.3.1 Ratio Control in Distillation -- 9.4 Feedforward Control -- 9.5 Constraint/Override Control -- 9.6 Decoupling -- Tutorial and Self-Study Questions -- References -- Chapter 10 Model Predictive Control -- 10.1 Introduction to MPC -- 10.2 To MPC or not to MPC -- 10.3 MPC Fundamentals -- 10.4 Dynamic Matrix Control -- 10.5 Setting Up a MPC in Distillation -- 10.5.1 Model Setup -- 10.5.2 Objective Function -- 10.5.3 Tuning -- 10.6 Digitalization and MPC -- Tutorial and Self-Study Questions -- References -- Chapter 11 Plant-Wide Control in Distillation -- 11.1 Distillation Column Trains -- 11.1.1 Average Flow Control -- 11.1.2 Alternatives to Average-Level Control -- 11.2 Heat Integration (Energy Recycle) -- 11.2.1 Auxiliary Steam Boilers -- 11.2.2 Feed Preheating -- 11.2.3 High-pressure/Low-pressure Columns -- 11.2.4 Mechanical Vapor Recompression -- 11.3 Materials Recycling -- Tutorial and Self-Study Questions -- References -- Workshop 1 Hands-on Learning By Doing -- Workshop 2 Fundamental Distillation Column Control -- Workshop 3 Distillation Column Model Predictive Control -- Workshop 4 Distillation Column Control in a Plant-Wide Setting -- Appendix A P& -- ID Symbols -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
"The book is a practical text incorporating hands-on or active learning |
|
|
|
|
|
|
|
|
|
|
|
|
|
using process simulation. The topics and their treatment are relevant to today's engineer providing them with the fundamental knowledge and tools to apply to modern distillation control. Unlike other texts that take a Laplace Transform or state-space-based approach this text presents a more balanced real-time approach with a good mix of fundamentals and practical insights. The text includes numerous exercises including up to date process simulation exercises. Finally, the process simulation exercises are designed to be simulator agnostic so that they can be performed on the process simulator locally available. Topics include An Introduction to the Real-Time Approach to Distillation Control, Distillation Control Hardware, Basic Distillation Control, Distillation Composition Control, Refinery Versus Chemical Plant Distillation Control, Distillation Control Tuning, Fine Chemical Distillation Control, Advanced Regulatory Control (ARC), Model Predictive Control (MPC), and Plant-Wide Control and Distillation"-- |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910823193403321 |
|
|
Autore |
Mertz D. W (Donald W.), <1947-> |
|
|
Titolo |
On the elements of ontology : attribute instances and structure / / D.W. Mertz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 |
|
©2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-11-045451-3 |
3-11-045521-8 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (328 p.) |
|
|
|
|
|
|
Collana |
|
Philosophische Analyse, , 2198-2066 ; ; Band 68 = Philosophical Analysis ; ; Volume 68 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Preface -- 1. Overview: Attribution, Structure, and the Five Forms of Composition -- 2. Instance vs. Classic Ontology: Individuation and Adherence -- 3. Instance vs. Classic Ontology: Intensions and Unification -- 4. Atomic Structures: Facts and |
|
|
|
|
|
|
|
|
|
|
|
Their Natures -- 5. Complex Structures and Ontic Atoms -- References -- Index |
|
|
|
|
|
|
Sommario/riassunto |
|
Central to Elements is an assay of the attributional union properties and relations have with their subjects, a topic historically left metaphorical. The work critiques eight Aristotelian assumptions concerning attribute dependence and ‘inherence’, per se subjects (‘substances’), attributes as agent-organizers, and unity-by-a-shared-one. Groups of these assumptions are seen to yield contradiction, vicious regress, or other problems. This analysis, joined with insights from an assay of ubiquitous structure, motivate ten theses explicating attribution and its primary ontic status. The theses detail: attributes proper as individuated instances, structure as instance-generated facts and their two forms of composition, the conditioning role and universal nature of instances’ component intensions, the primacy of attribute instances for generating all forms of composition and complex entities, and identity and indiscernibility criteria for the latter. Principal is the insight that attribution is intension-determined combinatorial agency. It is its systematizing implications that provide solutions to classic problems, e.g., Composition, Individuation, and Universals, and in net generate a comprehensive one-category structuralist ontology. |
|
|
|
|
|
|
|
| |