|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830703503321 |
|
|
Autore |
López Onel L. A. |
|
|
Titolo |
Wireless RF energy transfer in the massive IoT era : towards sustainable zero-energy networks / / Onel L. A. López, Hirley Alves |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-119-71869-4 |
1-119-71870-8 |
1-119-71868-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (251 pages) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Wireless power transmission |
Internet of things - Power supply |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Wireless RF Energy Transfer in the Massive IoT Era -- Contents -- Preface -- Acknowledgments -- Acronyms -- Mathematical Notation -- About the Companion Website -- 1 Massive IoT -- 1.1 Selected Use-cases and Scenarios -- 1.2 Key Technologies -- 1.3 Requirements and KPIs -- 1.4 Key Enablers -- 1.4.1 Holistic and Globally Scalable Massive IoT -- 1.4.2 Sustainable Connectivity -- 1.5 Final Remarks and Discussions -- 2 Wireless RF Energy Transfer: An Overview -- 2.1 Energy Harvesting -- 2.1.1 EH Sources -- 2.1.2 RF Energy Transfer -- 2.2 RF-EH Performance -- 2.2.1 Analytical Models -- 2.2.2 State-of-the-art on RF EH -- 2.3 RF-EH IoT -- 2.3.1 Architectures of IoT RF EH Networks -- 2.3.2 Green WET -- 2.3.3 WIT-WET Layouts -- 2.3.4 RF EH in IoT Use Cases -- 2.4 Enabling Efficient RF-WET -- 2.4.1 Energy Beamforming -- 2.4.2 CSI-limited Schemes -- 2.4.3 Distributed Antenna System -- 2.4.4 Enhancements in Hardware and Medium -- 2.4.5 New Spectrum Opportunities -- 2.4.6 Resource Scheduling and Optimization -- 2.4.7 Distributed Ledger Technology -- 2.5 Final Remarks -- 3 Ambient RF EH -- 3.1 Motivation and Overview -- 3.1.1 Hybrid of RF-EH and Power Grid -- 3.1.2 Energy Usage Protocols -- 3.1.3 On Efficient Ambient RF-RH Designs -- 3.2 |
|
|
|
|
|
|
|
|
|
|
|
Measurement Campaigns -- 3.2.1 Greater London (2012) -- 3.2.2 Diyarbakir (2014) -- 3.2.3 Flanders (2017-2019) -- 3.2.4 Other Measurements -- 3.3 Energy Arrival Modeling -- 3.3.1 Based on Arbitrary Distributions -- 3.3.2 Based on Stochastic Geometry -- 3.4 A Stochastic Geometry-based Study -- 3.4.1 System Model and Assumptions -- 3.4.2 Energy Coverage Probability -- 3.4.3 Average Harvested Energy -- 3.4.4 Meta-distribution of Harvested Energy -- 3.4.5 Numerical Results -- 3.5 Final Considerations -- 4 Efficient Schemes for WET -- 4.1 EH from Dedicated WET -- 4.2 Energy Beamforming -- 4.2.1 Low-complexity EB Design. |
4.2.2 CSI-limited Energy Beamforming -- 4.2.3 Performance Analysis -- 4.3 CSI-free Multi-antenna Techniques -- 4.3.1 System Model and Assumptions -- 4.3.2 Positioning-agnostic CSI-free WET -- 4.3.3 Positioning-aware CSI-free WET -- 4.4 On the Massive WET Performance -- 4.5 Final Considerations -- 5 Multi-PB Massive WET -- 5.1 On the PBs Deployment -- 5.1.1 Positioning-aware Deployments -- 5.1.2 Positioning-agnostic Deployments -- 5.2 Multi-antenna Energy Beamforming -- 5.2.1 Centralized Energy Beamforming -- 5.2.2 Distributed Energy Beamforming -- 5.2.3 Available RF Energy -- 5.3 Distributed CSI-free WET -- 5.3.1 SA, AA-IS and RPS-EMW -- 5.3.2 AA-SS -- 5.3.3 RAB -- 5.3.4 Positioning-aware CSI-free Schemes -- 5.3.5 Numerical Examples -- 5.4 On the Deployment Costs -- 5.5 Final Remarks -- 6 Wireless-powered Communication Networks -- 6.1 WPCN Models -- 6.2 Reliable Single-user WPCN -- 6.2.1 Harvest-then-transmit (HTT) -- 6.2.2 Allowing Energy Accumulation -- 6.2.3 HTT versus FEIPC -- 6.3 Multi-user Resource Allocation -- 6.3.1 Signal Model -- 6.3.2 Problem Formulation -- 6.3.3 Optimization Framework -- 6.3.4 TDMA versus SDMA -- 6.4 Cognitive MAC -- 6.4.1 Time Sharing and Scheduling -- 6.4.2 MAC Protocol at the Device Side -- 6.4.3 MAC Protocol at the HAP Side -- 6.5 Final Remarks -- 7 Simultaneous Wireless Information and Power Transfer -- 7.1 SWIPT Schemes -- 7.2 Separate EH and ID Receivers -- 7.2.1 Problem Formulation -- 7.2.2 Optimal Solution -- 7.2.3 Performance Results -- 7.3 Co-located EH and ID Receivers -- 7.3.1 Time Switching -- 7.3.2 Power splitting -- 7.3.3 TS versus PS -- 7.4 Enablers for Efficient SWIPT -- 7.4.1 Waveform Optimization -- 7.4.2 Multicarrier SWIPT -- 7.4.3 Cooperative Relaying -- 7.4.4 Interference Exploitation -- 7.4.5 Artificial Intelligence -- 7.5 Final Considerations -- 8 Final Notes -- 8.1 Summary. |
8.2 Future Research Directions -- A A Brief Overview on Finite Block Length Coding -- A.1 Finite Block Length Model -- B Distribution of Transferred RF Energy Under CSI-free WET -- B.1 Proof of Theorem 4.2 -- B.2 Proof of Theorem 4.4 -- C Clustering Algorithms -- C.1 Partitioning Methods -- C.1.1 K-Means -- C.1.2 K-Medoids -- C.1.3 K-Modes -- C.2 Hierarchical Methods -- C.3 Other Methods -- C.4 Pre-processing -- D Required SNR for a Target Decoding Error Probability (Proof of Theorem 6.1) -- D.1 On the Convergence of Algorithm 3 -- Bibliography -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
"In this chapter, we overview massive Internet of Things (IoT) and recognize how the IoT revolution spans beyond technology, encom- passing many societal aspects. We provide some illustrative examples of the sheer volume of connections in massive IoT deployments. To do so, we identify essential use-cases together with their requirements and key per- formance indicators (KPIs). We discuss how these requirements and KPIs impact the development of novel techniques and technologies. Moreover, we overview the current state of the art and pin-point key technologies for massive IoT. We then present enabling methods and technologies that are fundamental for the development of |
|
|
|
|
|
|
|
|
|
|
sustainable information and com- munications technology (ICT). We examine the power problem in massive IoT. Finally, we argue that massive WET is instrumental in i) addressing the challenges of powering massive IoT deployments, ii) reducing electronic waste, and iii) building sustainable ICT and society"-- |
|
|
|
|
|
| |