1.

Record Nr.

UNINA9910830686603321

Autore

Bolstad William M. <1943->

Titolo

Understanding computational Bayesian statistics [[electronic resource] /] / William M. Bolstad

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, 2010

ISBN

1-118-20992-3

1-283-44603-0

9786613446039

0-470-56737-6

0-470-56734-1

Descrizione fisica

1 online resource (334 p.)

Collana

Wiley series in computational statistics

Disciplina

519.5/42

519.542

Soggetti

Bayesian statistical decision theory - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"A John Wiley & Sons, Inc., publication."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction to Bayesian statistics -- Monte Carlo sampling from the posterior -- Bayesian inference -- Bayesian statistics using conjugate priors -- Markov chains -- Markov chain Monte Carlo sampling from the posterior -- Statistical inference from a Markov chain Monte Carlo sample -- Logistic regression -- Poisson regression and proportional hazards model -- Gibbs sampling and hierarchical models -- Going forward with Markov chain Monte Carlo -- Appendix A: Using the included Minitab macros -- Appendix B: Using the included R functions.

Sommario/riassunto

A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustra