1.

Record Nr.

UNINA9910788189403321

Titolo

Making a difference? : social assessment policy and praxis and its emergence in China / / edited by Susanna Price and Kathryn Robinson

Pubbl/distr/stampa

New York ; ; Oxford, [England] : , : berghahn, , 2015

©2015

ISBN

1-78238-458-8

Descrizione fisica

1 online resource (315 p.)

Collana

Asia-Pacific Studies: Past and Present

Disciplina

338.951

Soggetti

Economic development projects - Social aspects - China

Social planning - China

Needs assessment - China

Public welfare - China

China Social policy

China Economic policy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Contents; Figures and Tables; Preface; Abbreviations; Introduction - Making Economic Growth Socially Sustainable?; Part I - Engaged Social Research in Shifting Development Narratives; Introduction to Part I; 1 - Landmarks in Development: The Introduction of Social Analysis; 2 - Social Science and the Mining Sector: Contemporary Roles and Dilemmas for Engagement; 3 - Practising Social Development: Navigating Local Contexts to Benefit Local Communities; 4 - Striving for Good Practice: Unpacking AusAID's Approach to Community Development

5 - Seeds of Life: Social Research for Improved Farmer Yields in Timor-LestePart II - Applying Sociological Knowledge in China; Introduction to Part II; 6 - Social Assessment in China: Progress and Application in Domestic Development Projects; 7 - Turning Risks into Opportunities? Social Assessment as Governmental Techologies; 8 - Participatory Monitoring of Development Projects in China; 9 - How Social Assessment Could Improve Conservation Policy and Projects: Cases



from Pastoral Management in China

10 - Improving Social Impact Assessment and Participatory Planning to Identify and Manage Involuntary Resettlement Risks in the People's Republic of China11 - Stakeholder Participation in Rural Land Acquisition in China: A Case Study of the Resettlement Decision-making Process; Conclusion; Contributors; Glossary; Index

Sommario/riassunto

Social assessment for projects in China is an important emerging field. This collection of essays - from authors whose formative work has influenced the policies that shape practice in development-affected communities - locates recent Chinese experience of the development of social assessment practices (including in displacement and resettlement) in a historical and comparative perspective. Contributors - social scientists employed by international development banks, national government agencies, and sub-contracting groups - examine projects from a practitioner's perspective. Real-life experi

2.

Record Nr.

UNINA9910782429603321

Titolo

Wavelets [[electronic resource] ] : theory and applications / / edited by Gordon Erlebacher, M. Yousuff Hussaini, Leland M. Jameson

Pubbl/distr/stampa

New York, : Oxford University Press, 1996

ISBN

0-19-773272-0

1-280-65492-9

9786610654925

0-19-802542-4

Descrizione fisica

1 online resource (523 p.)

Collana

ICASE/LaRC Series in Computational Science and Engineering

Altri autori (Persone)

HussainiM. Yousuff

JamesonLeland M

ErlebacherGordon <1957->

Disciplina

515/.2433

Soggetti

Wavelets (Mathematics)

Harmonic analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Formal notes of the short course on wavelets conducted by the Institute for Computer Applications in Science and Engineering (ICASE) and NASA Langley Research Center (LaRC) during February 22-26,



1993"--Pref.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Preface; Contents; 1 Introduction to Wavelets and their Application to Partial Differential Equations; 2 Wavelets from Filter Banks; 3 Wavelets, Functions, and Operators; 4 Wavelets, Multiresolution Analysis and Fast Numerical Algorithms; 5 Some Wavelet Algorithms for Partial Differential Equations; 6 Some Wavelet Algorithms for Turbulence Analysis and Modeling; 7 Wavelet Analysis of Fractals: from the Mathematical Concepts to Experimental Reality; Index

Sommario/riassunto

1. Introduction to Wavelets and their Applications to Partial Differential Equations, L.M. Jameson. 2. Wavelets from Filter Banks, G. Strang. 3. Wavelets, Functions, and Operators, Ph. Tchamitchian. 4. Wavelets, Multiresolution Analysis, and Fast Numerical Algorithms, G. Beylkin. 5. Some Wavelet Algorithms for Partial Differential Equations, J. Liandrat. 6. Some Wavelet Algorithms for Turbulence Analysis and Modelling, J. Liandrat. 7. Wavelet Analysis of Fractals: from the Mathematical Concepts to Experimental Reality, A. Arneodo

3.

Record Nr.

UNINA9910830665803321

Titolo

Nanogap electrodes / / edited by Tao Li

Pubbl/distr/stampa

Weinheim, Germany : , : Wiley, , [2021]

©2021

ISBN

3-527-65958-7

3-527-65959-5

3-527-65956-0

Descrizione fisica

1 online resource (435 pages)

Disciplina

621.3815

Soggetti

Nanoelectronics

Electrodes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.



Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond‐CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular‐Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References -- Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many‐Body Interactions -- 2.4.1 Electron‐Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong‐Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport -- 2.6 First‐Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template -- 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On‐Wire Lithography -- 3.6.4 Nanowire Mask.

3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe‐Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe‐Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene -- 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS -- 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS -- 4.2.6 STM Imaging by IETS -- 4.3 Optical and Optoelectronic Spectroscopy -- 4.4 Concluding Remarks -- References -- Chapter 5 Single‐Molecule Electronic Devices -- 5.1 Introduction -- 5.2 Wiring Molecules into "Gaps": Anchoring Groups and Assembly Methods -- 5.2.1 Anchor Groups -- 5.2.2 Effect of Anchor-Bridge Orbital Overlaps on Conductance -- 5.2.3 In Situ Chemical Reactions to Produce Covalent Contacts -- 5.3 Electrical Rectifier -- 5.3.1 Rectification Toward Diodes -- 5.3.2 General Mechanisms for Molecular Rectification -- 5.3.2.1 Aviram-Ratner Model -- 5.3.2.2 Kornilovitch-Bratkovsky-Williams Model -- 5.3.2.3 Datta-Paulsson Model -- 5.3.3 Rectification Originated from Molecules -- 5.3.3.1 D-σ-A and D-π-A Systems -- 5.3.3.2 D-A Diblock Molecular System.

5.3.4 Rectification Stemming from Different Interfacial Coupling --



5.3.4.1 Different Electrodes -- 5.3.4.2 Anchoring Groups -- 5.3.4.3 Contact Geometry -- 5.3.4.4 Interfacial Distance -- 5.3.5 Additional Molecular Rectifiers -- 5.4 Conductance Switches -- 5.4.1 Voltage Pulse Induced Switches -- 5.4.2 Light‐Induced Switching -- 5.4.3 Switching Triggered by Chemical Process (Redox and pH) -- 5.4.4 Spintronics‐Based Switch -- 5.5 Gating the Transport: Transistor‐Like Single‐Molecule Devices -- 5.5.1 Electrostatic Gate Control -- 5.5.2 Side Gating -- 5.5.3 Electrochemical Gate Control -- 5.5.4 Molecular Quantum Dots -- 5.6 Challenges and Outlooks -- References -- Chapter 6 Molecular Electronic Junctions Based on Self‐Assembled Monolayers -- 6.1 Introduction -- 6.2 Molecular Monolayers for Molecular Electronics Devices -- 6.2.1 Monolayers Covalently Bonded to Noble Metals -- 6.2.2 Monolayers Attached to Non‐metal Substrates -- 6.2.3 Langmuir-Blodgett Method -- 6.3 Top Electrodes -- 6.3.1 Deposited Metal -- 6.3.1.1 Direct Evaporation -- 6.3.1.2 Indirect Evaporation -- 6.3.2 Make Top Contact by Soft Methods -- 6.3.2.1 Lift‐and‐Float Approach -- 6.3.2.2 Crosswire Junction -- 6.3.2.3 Transfer Printing -- 6.3.2.4 Graphene as Top Electrode -- 6.3.2.5 Liquid Metal Contact -- 6.4 Experimental Progress with Ensemble Molecular Junctions -- 6.5 Outlook -- References -- Chapter 7 Toward Devices and Applications -- 7.1 Introduction -- 7.2 Major Issues: Reliability and Robustness -- 7.2.1 Single Molecular Device -- 7.2.1.1 Top‐Contact Junctions -- 7.2.1.2 Planar Metallic Nanogap Electrodes -- 7.2.1.3 Planar Nanogap Electrodes Based on Single Walled Carbon Nanotubes (SWCNTs) or Graphene -- 7.2.1.4 The Absorption of Molecule on the Surface of SWCNTs or Graphene -- 7.2.2 Molecular Device Based on Molecule Monolayer -- 7.2.2.1 Bottom Electrodes.

7.2.2.2 Insulating Layer with Holes to Define the Size of the Bottom Electrodes -- 7.2.2.3 Molecule Monolayer Formation -- 7.2.2.4 Top Electrodes -- 7.3 Potential Integration Solutions -- 7.3.1 Carbon Nanotube or Graphene Interconnects -- 7.3.2 Self‐Assembled Monolayers for Integrated Molecular Junctions -- 7.3.3 Cross Bar Architecture -- 7.4 Beyond Simple Charge Transport -- 7.4.1 Mechanics -- 7.4.2 Thermoelectronics -- 7.4.3 Quantum Interference -- 7.4.4 Spintronics -- 7.4.4.1 SAM‐Based Magnetic Tunnel Junctions -- 7.4.4.2 Molecule Based Spin‐Valves or Magnetic Tunnel Junctions -- 7.4.4.3 Single Molecular Spin Transistor -- 7.4.4.4 Single Molecular Nuclear Spin Transistor -- 7.4.4.5 Molecule Based Hybrid Spintronic Devices -- 7.5 Electrochemistry with Nanogap Electrodes -- References -- Index -- EULA.