1.

Record Nr.

UNINA9910830637703321

Titolo

Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka

Pubbl/distr/stampa

Newark : , : Wiley-IEEE Press, , [2022]

©2022

ISBN

1-119-71968-2

1-119-71966-6

1-119-71965-8

Descrizione fisica

1 online resource (446 pages)

Collana

IEEE Press.

Disciplina

621.31920284

Soggetti

Polymeric composites

Electric apparatus and appliances - Materials

Electric insulators and insulation - Polymers

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Polymer Composites for Electrical Energy Storage -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Effect of Nanofiller Dimension -- 1.4 Orientation of Nanofillers -- 1.5 Surface Modification of Nanofillers -- 1.6 Polymer Composites with Multiple Nanofillers -- 1.7 Multilayer-structured Polymer Composites -- 1.8 Conclusion -- References -- Chapter 2 Polymer Composites for Thermal Energy Storage -- 2.1 Introduction -- 2.2 Shape-stabilized Polymeric Phase Change Composites -- 2.2.1 Micro/Nanoencapsulated Method -- 2.2.2 Physical Blending -- 2.2.3 Porous Supporting Scaffolds -- 2.2.4 Solid-Solid Composite PCMs -- 2.3 Thermally Conductive Polymeric Phase Change Composites -- 2.3.1 Metals -- 2.3.2 Carbon Materials -- 2.3.3 Ceramics -- 2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites -- 2.4.1 Electro-to-Heat Conversion -- 2.4.2 Light-to-Heat Conversion -- 2.4.3 Magnetism-to-Heat Conversion -- 2.4.4 Heat-to-Electricity Conversion -- 2.5 Emerging Applications of Polymeric Phase Change Composites -- 2.5.1 Thermal Management of Electronics -- 2.5.2



Smart Textiles -- 2.5.3 Shape Memory Devices -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Polymer Composites for High-Temperature Applications -- 3.1 Applications of Polymer Composite Materials in High-Temperature Electrical Insulation -- 3.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix -- 3.1.2 Modification of Resin Matrix with Reinforcements -- 3.1.3 Modifications in the Thermal Conductivity of Resin Matrix -- 3.2 High-Temperature Applications for Electrical Energy Storage -- 3.2.1 General Considerations for High-Temperature Dielectrics -- 3.2.2 High-Temperature-Resistant Polymer Matrix.

3.2.3 Polymer Composites for High-Temperature Energy Storage Applications -- 3.2.4 Surface Modification of Nanocomposite for High-Temperature Applications -- 3.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications -- 3.3  of High-Temperature Polymer in Electronic Packaging -- 3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design -- 3.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material -- 3.4  of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields -- 3.4.1 Wave-Transmitting Materials -- 3.4.2 Absorbing Material -- 3.5 Summary -- References -- Chapter 4 Fire-Retardant Polymer Composites for Electrical Engineering -- 4.1 Introduction -- 4.2 Fire-Retardant Cables and Wires -- 4.2.1 Fundamental Overview -- 4.2.2 Understanding of Fire-Retardant Cables and Wires -- 4.3 Fire-Retardant Polymer Composites for Electrical Equipment -- 4.3.1 Fundamental Overview -- 4.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment -- 4.4 Fire-Retardant Fiber Reinforced Polymer Composites -- 4.4.1 Fundamental Overview -- 4.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Polymer Composites for Power Cable Insulation -- 5.1 Introduction -- 5.2 Trend in Nanocomposite Materials for Cable Insulation -- 5.2.1 Overview -- 5.2.2 Polymer Materials as Matrix Resin -- 5.2.3 Fillers -- 5.2.4 Nanocomposites -- 5.3 Factors Influencing Properties -- 5.4 Issues in Nanocomposite Insulation Materials Research -- 5.5 Understanding Dielectric and Insulation Phenomena -- 5.5.1 Electromagnetic Understanding -- 5.5.2 Understanding Space Charge Behavior by Q(t) Method -- References.

Chapter 6 Semi-conductive Polymer Composites for Power Cables -- 6.1 Introduction -- 6.1.1 Function of Semi-conductive Composites -- 6.1.2 Development of Semi-conductive Composites -- 6.2 Conductive Mechanism of Semi-conductive Polymer Composites -- 6.2.1 Percolation Theory -- 6.2.2 Tunneling Conduction Theory -- 6.2.3 Mechanism of Positive Temperature Coefficient -- 6.3 Effect of Polymer Matrix on Semi-conductivity -- 6.3.1 Thermoset Polymer Matrix -- 6.3.2 Thermoplastic Polymer Matrix -- 6.3.3 Blended Polymer Matrix -- 6.4 Effect of Conductive Fillers on Semi-conductivity -- 6.4.1 Carbon Black -- 6.4.2 Carbonaceous Fillers with One- and Two-Dimensions -- 6.4.3 Secondary Filler for Carbon Black Filled Composites -- 6.5 Effect of Semi-conductive Composites on Space Charge Injection -- 6.6 Conclusions -- References -- Chapter 7 Polymer Composites for Electric Stress Control -- 7.1 Introduction -- 7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress -- 7.3 Practical Application of -FGMs to GIS Spacer -- 7.4 Application to Power Apparatus -- References -- Chapter 8 Composite Materials Used in Outdoor Insulation -- 8.1 Introduction -- 8.2 Overview of SIR Materials -- 8.2.1 RTV Coatings -- 8.2.2 Composite Insulators -- 8.2.3 Liquid Silicone Rubber (LSR) -- 8.2.4 Aging Mechanism and Condition



Assessment of SIR Materials -- 8.3 New External Insulation Materials -- 8.3.1 Anti-icing Semiconductor Materials -- 8.3.2 Hydrophobic CEP -- 8.4 Summary -- References -- Chapter 9 Polymer Composites for Embedded Capacitors -- 9.1 Introduction -- 9.1.1 Development of Embedded Technology -- 9.1.2 Dielectric Materials for Commercial Embedded Capacitors -- 9.2 Researches on the Polymer-Based Dielectric Nanocomposites -- 9.2.1 Filler Particles -- 9.2.2 Epoxy Matrix -- 9.3 Fabrication Process of Embedded Capacitors.

9.4 Reliability Test of Embedded Capacitor Materials -- 9.5 Conclusions and Perspectives -- References -- Chapter 10 Polymer Composites for Generators and Motors -- 10.1 Introduction -- 10.2 Polymer Composite in High-Voltage Rotating Machines -- 10.3 Ground Wall Insulation -- 10.3.1 Mica/Epoxy Insulation -- 10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism -- 10.3.3 Insulation Design and V-t Curve -- 10.4 Polymer Nanocomposite for Rotating Machine -- 10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property -- 10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine -- 10.5 Stress-Grading System of Rotating Machines -- 10.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials -- 10.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines -- References -- Chapter 11 Polymer Composite Conductors and Lightning Damage -- 11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft -- 11.1.1 The Lightning Environment -- 11.1.2 Lightning Test Environment of Aircrafts -- 11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing -- 11.1.4 Application of CFRP Composites in Aircraft -- 11.2 The Dynamic Conductive Characteristics of CFRP -- 11.2.1 A Review of the Research on the Conductivity of CFRP -- 11.2.2 The Testing Methods -- 11.2.3 The Experimental Results of the Dynamic Impedance of CFRP -- 11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP -- 11.3 The Lightning Strike-Induced Damage of CFRP Strike -- 11.3.1 Introduction of the Lightning Damage of CFRP -- 11.3.2 Single Lightning Strike-Induced Damage -- 11.3.3 Multiple Lightning Strikes-Induced Damage -- 11.4 The Simulation of Lightning Strike-Induced Damage of CFRP.

11.4.1 Overview of Lightning Damage Simulation Researches -- 11.4.2 Establishment of the Coupled Thermal-Electrical Model -- 11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates -- 11.4.4 Simulated Lightning Damage Results -- References -- Chapter 12 Polymer Composites for Switchgears -- 12.1 Introduction -- 12.2 History of Switchgear -- 12.3 Typical Insulators in Switchgears -- 12.3.1 Epoxy-based Composite Insulators -- 12.3.2 Insulator-Manufacturing Process -- 12.4 Materials for Epoxy-based Composites -- 12.4.1 Epoxy Resins -- 12.4.2 Hardeners -- 12.4.3 Inorganic Fillers and Fibers -- 12.4.4 Silane Coupling Agents -- 12.4.5 Fabrication of Epoxy-based Composites -- 12.5 Properties of Epoxy-based Composites -- 12.5.1 Necessary Properties of Epoxy-based Composites for Switchgears -- 12.5.2 Resistance to Thermal Stresses -- 12.5.3 Resistances to Electrical Stresses -- 12.5.4 Resistances to Ambient Stresses -- 12.5.5 Resistances to Mechanical Stresses -- 12.5.6 International Standards for Evaluation of Composites -- 12.6 Advances of Epoxy-based Composites for Switchgear -- 12.6.1 Nanocomposites -- 12.6.2 High Thermal Conductive Composites -- 12.6.3 Biomass Material-Based Composites -- 12.6.4 Functionally Graded Materials -- 12.6.5 Estimate of Remaining Life of Composites -- 12.7 Conclusion -- References -- Chapter 13 Glass Fiber-Reinforced Polymer Composites for Power Equipment -- 13.1 Overview



-- 13.2 Glass Fiber-Reinforced Polymer Composites -- 13.2.1 Fibers -- 13.2.2 Polymers -- 13.2.3 Manufacturing Methods -- 13.2.4 Specifications of Several Kinds of GFRP Materials -- 13.3 Application of Glass Fiber-Reinforced Polymer Composites -- 13.3.1 Laminated Sheets -- 13.3.2 Composite Long Rod Insulators -- 13.3.3 UHV-Insulated Pull Rod for GIS -- 13.3.4 Composite Pole -- 13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor.

13.3.6 Composite Station Post Insulators.

Sommario/riassunto

"Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The book's relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment"--