1.

Record Nr.

UNINA9910830600803321

Autore

Inamuddin

Titolo

Biomimicry Materials and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2023

ISBN

1-394-16704-0

1-394-16703-2

Descrizione fisica

1 online resource (254 pages)

Altri autori (Persone)

AltalhiTariq

AlrogiAshjan

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biomimetic Optics -- 1.1 Introduction -- 1.2 What is Biomimicry? -- 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms -- 1.3.1 Optical Structure Analysis in Biology -- 1.3.2 The Analysis of Optical Characteristics in Biological Materials -- 1.3.3 Optical Biomimetic Materials Fabrication Strategies -- 1.4 Biological Visual Systems-Animal and Human -- 1.4.1 Simple Eyes -- 1.4.2 Compound Eyes -- 1.4.2.1 Appositional Compound Eyes -- 1.4.2.2 Superpositional Compound Eyes -- 1.5. The Eye's Optical and Neural Components -- 1.5.1 Cornea -- 1.5.2 Pupils -- 1.5.3 Lens -- 1.5.4 Retina -- 1.6 Application of Biomimetic Optics -- 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye -- 1.6.2 Microlens With a Dual-Facet Design -- 1.6.3 Fiber Optics in Nature -- 1.6.4 Bioinspired Optical Device -- 1.6.4.1 Tunable Lenses Inspired by Nature -- 1.6.4.2 X-Ray Telescope -- 1.6.4.3 Bioinspired Sensors -- 1.7 Conclusion -- References -- Chapter 2 Mimicry at the Material-Cell Interface -- 2.1 Cell and Material Interfaces -- 2.2 Host-Microbe Interactions and Interface Mimicry -- 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix -- 2.4 Mimicry, Manipulations, and Cell Behavior -- 2.5 Single-Cell Transcriptomics and Involution Mimicry -- 2.6 Molecular Mimicry and Disturbed



Immune Surveillance -- 2.7 Surface Chemistry, and Cell-Material Interface -- 2.8 Cell Biology and Surface Topography -- 2.9 3D Extracellular Matrix Mimics and Materials Chemistry -- 2.10 Microbe Interactions and Interface Mimicry -- 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry -- 2.12 Vasculogenic Mimicry and Tumor Angiogenesis -- References.

Chapter 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide -- 3.1 Introduction -- 3.2 Bacteriocins -- 3.3 Lactic Acid Bacteria -- 3.4 Classification of LAB Bacteriocins -- 3.4.1 Class I Bacteriocins or Lantibiotics -- 3.4.1.1 Class Ia -- 3.4.1.2 Class Ib -- 3.4.1.3 Class Ic or Antibiotics -- 3.4.1.4 Class Id -- 3.4.1.5 Class Ie -- 3.4.1.6 Class If -- 3.4.2 Class II Bacteriocins -- 3.4.3 Class III Bacteriocins -- 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth -- 3.5.1 Action on Cell Wall Synthesis -- 3.5.1.1 Pore Formation -- 3.5.1.2 Inhibition of Peptidoglycan Synthesis -- 3.5.2 Obstruction in Replication and Transcription -- 3.5.3 Inhibition in Protein Synthesis -- 3.5.4 Disruption of Membrane Structure -- 3.5.5 Disruption in Septum Formation -- 3.6 Antimicrobial Properties of LAB Bacteriocins -- 3.6.1 Antiviral Activity -- 3.6.2 Antibacterial Properties -- 3.6.3 Antifungal Activity -- 3.7 Applications -- 3.7.1 Bacteriocins in Packaging Film -- 3.7.2 Potential Use as Biopreservatives -- 3.7.3 Bacteriocins as Antibiofilm -- 3.7.4 Applications in Foods Industries -- 3.8 Conclusion -- Acknowledgment -- References -- Chapter 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine -- 4.1 Introduction -- 4.2 Structure of PDA -- 4.3 Polydopamine as a Biomedical Material -- 4.4 Polydopamine as a Biomedical Adhesive -- 4.5 Availability of Polydopamine and its Biomedical Applications -- 4.6 Polydopamine Coatings of Nanomaterials -- 4.7 Polydopamine-Based Capsules -- 4.8 Polydopamine Nanoparticles and Nanocomposites -- 4.9 Polydopamine Properties -- 4.9.1 Cell Adhesion -- 4.9.2 Mineralization and Bone Regeneration -- 4.9.3 Blood Compatibility -- 4.9.4 Antimicrobial Effect -- 4.10 Dental Applications -- 4.11 Dental Adhesives -- 4.11.1 Tooth Mineralization -- 4.12 Conclusions -- References.

Chapter 5 Application of Electroactive Polymer Actuator: A Brief Review -- 5.1 Introduction -- 5.2 Chronological Summary of the Evolution of EAP Actuator -- 5.3 Electroactive Polymer Actuators Groups -- 5.3.1 Ionic Electroactive Polymers -- 5.3.2 Electronic Electroactive Polymers -- 5.4 Application of Electroactive Polymer Actuators -- 5.4.1 Soft Robotic Actuator Applications -- 5.4.2 Underwater Applications -- 5.4.3 Aerospace Applications -- 5.4.4 Energy Harvesting Applications -- 5.4.5 Healthcare and Biomedical Applications -- 5.4.6 Shape Memory Polymer Applications -- 5.4.7 Smart Window Applications -- 5.4.8 Wearable Electronics Applications -- 5.5 Conclusion -- References -- Chapter 6 Bioinspired Hydrogels Through 3D Bioprinting -- 6.1 Introduction -- 6.2 Bioinspiration -- 6.3 3D Bioprinting -- 6.3.1 Inkjet Bioprinting -- 6.3.2 Extrusion Printing -- 6.4 Hydrogels as Inks for 3D Bioprinting -- 6.5 Polymers Used for Bioinspired Hydrogels -- 6.5.1 Alginate -- 6.5.2 Cellulose -- 6.5.3 Chitosan -- 6.5.4 Fibrin -- 6.5.5 Silk -- 6.6 Conclusion -- References -- Chapter 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays -- 7.1 Introduction -- 7.2 Refreshable Braille Display -- 7.3 Electroactive Polymers -- 7.4 EAP-Based Braille Actuator -- 7.5 Conclusions -- References -- Chapter 8 Materials Biomimicked From Natural Ones -- 8.1 Introduction -- 8.2 Damage-Tolerant Ceramics -- 8.2.1 General Considerations -- 8.2.2 Nacre -- 8.2.3 Tooth Enamel -- 8.3 Protein-Based Materials With Tailored Properties -- 8.3.1 General Considerations -- 8.3.2 Dragline Silk -- 8.3.3 Fish Scales -- 8.4



Polymers Fit for Easy Junction/Self-Cleaning -- 8.4.1 General Considerations -- 8.4.2 Gecko for No-Glue Adhesion -- 8.4.3 Blue Mussel for Development of Specific Adhesives -- 8.4.4 Shark Skin for Functional Surfaces.

8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones -- 8.6 Conclusions -- References -- Chapter 9 Novel Biomimicry Techniques for Detecting Plant Diseases -- 9.1 Introduction -- 9.2 Preharvest Biomimicry Detection Techniques -- 9.2.1 Remote Sensing Technique Approach -- 9.2.2 Machine Vision and Fuzzy Logic Approaches -- 9.2.3 Robotics Approach -- 9.3 Postharvest Biomimicry Detection Techniques -- 9.3.1 Neural Network Approach -- 9.3.2 Support Vector Machine Approach -- 9.4 Prospects and Conclusion -- References -- Chapter 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries -- 10.1 Introduction -- 10.2 Examples of Biomimicry Fabrics -- 10.2.1 Algae Fiber -- 10.2.2 Mushroom Leather -- 10.2.3 Fabric Mimics -- 10.2.4 Bacterial Pigments -- 10.2.5 Orange Fabrics -- 10.2.6 Protein Couture -- 10.2.7 Natural Fiber Fabrics -- 10.3 Fabric Production from Biomaterial -- 10.3.1 Soy Fabric -- 10.3.2 Cotton Fabric -- 10.3.3 Supima Fabric -- 10.3.4 Pima Fabric -- 10.3.5 Wool Fabric -- 10.3.6 Hemp Fabric -- 10.4 Current Methods of Biomimicry Materials -- 10.5 Future of Biomimicry -- 10.6 Benefits of Biomimicry -- 10.6.1 Sustainability -- 10.6.2 Perform Welt -- 10.6.3 Energy Saving -- 10.6.4 Cut-Resistant Costs -- 10.6.5 Eliminate Waste -- 10.6.6 New Product Derivation -- 10.6.7 Disrupt Traditional Thinking -- 10.6.8 Adaptability to Climate -- 10.6.9 Nourish Curiosity -- 10.6.10 Leverage Collaboration -- 10.7 Conclusion -- References -- Index -- EULA.