|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830584403321 |
|
|
Titolo |
Progress in Adhesion and Adhesives . Volume 7 / / edited by K. L. Mittal |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2024] |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-394-19837-X |
1-394-19836-1 |
|
|
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (413 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Stress Distribution and Design Analysis of Adhesively Bonded Tubular Composite Joints: A Review -- 1.1 Introduction -- 1.2 A Brief Review of Stress Analysis in Tubular Composit e Joints -- 1.3 Governing Equations Based on Linear Elasticity -- 1.3.1 Typical Assumptions in a Tubular Lap Joint Under Torsion -- 1.3.2 Stress Distribution in a Defect-Free Tubular Lap Joint Under Torsion -- 1.3.3 Stress Distribution in Defect-Free Joints Under Bending Moment -- 1.3.4 Stress Distribution in Defect-Free Joints Under Axial Load -- 1.3.5 Design Aspects Related to Adhesive Layer -- 1.3.6 Stress Distribution in Damaged Joints Due to Voids, Debonds, or Delaminations -- 1.3.7 Stress Distribution in Hybrid Joints Under Torsion -- 1.4 Nonlinear Analysis and Stress Distribution in Tubular Composite Joints -- 1.5 Failure Analysis of Adhesive Layer -- 1.6 Summary -- Acknowledgment -- References -- Chapter 2 Durability of Structural Adhesive Joints: Factors Affecting Durability, Durability Assessment and Ways to Improve Durability -- Abbreviations -- 2.1 Introduction -- 2.2 Factors Affecting Durability -- 2.2.1 Materials -- 2.2.1.1 Adhesives -- 2.2.2 Effects of Glass Transition Temperature (Tg) -- 2.2.2.1 Elastic Modulus -- 2.2.2.2 Lap-Shear Strength -- 2.2.3 Effects of Adherends -- 2.2.3.1 Aluminium -- 2.2.3.2 Steel -- 2.2.3.3 Titanium -- 2.2.4 Effects of |
|
|
|
|
|
|
|
|
|
Environment -- 2.2.4.1 Moisture -- 2.2.4.2 Coefficient of Thermal Expansion (CTE) -- 2.2.4.3 Stress -- 2.2.4.4 Temperature -- 2.2.5 Other Factors Affecting the Durability of Adhesive Joints -- 2.3 Durability Assessment -- 2.4 Methods to Improve Durability -- 2.4.1 Addition of Nano-Fillers -- 2.4.1.1 Carbon Nanofillers -- 2.4.1.2 Alumina-Based Nano-Fillers -- 2.4.1.3 Silica-Based Nano-Fillers -- 2.4.1.4 Other Nanofillers -- 2.5 Summary. |
References -- Chapter 3 Mechanical Surface Treatment of Adherends for Adhesive Bonding -- 3.1 Introduction -- 3.2 Characteristics of Mechanical Surface Treatment Methods -- 3.2.1 Introduction -- 3.2.2 Processing with Coated Abrasive Tools -- 3.2.3 Abrasive Blasting -- 3.2.4 Shot Peening -- 3.2.5 Brushing -- 3.2.6 Milling -- 3.2.7 Grinding -- 3.3 Types of Abrasive Blasting Operations -- 3.3.1 Sandblasting -- 3.3.2 Shot Blasting -- 3.3.3 Grit-Blasting -- 3.3.4 Corundumizing -- 3.3.5 Glazing -- 3.3.6 Dry Ice Blasting -- 3.3.7 Soda Blasting -- 3.4 Influence of Mechanical Treatment on the Strength of Adhesive Joints -- 3.4.1 Processing with Abrasive Coated Tools -- 3.4.1.1 Mechanical Treatment Using Single and Multiple Abrasive Coated Tools -- 3.4.1.2 Surface Treatment with a Single Type of Abrasive Paper -- 3.4.2 Abrasive Blasting - Sandblasting -- 3.4.2.1 Influence of the Type of Abrasive Blasting on the Strength of Adhesive Joints: Sandblasting and Grit-Blasting -- 3.4.2.2 Influence of Abrasive Blasting Parameters on the Strength of Adhesive Joints -- 3.4.3 Abrasive Blasting - Shot Peening -- 3.4.3.1 Influence of Different Variants of Surface Treatment Methods Including Shot Peening on the Strength of Adhesive Joints -- 3.5 Summary -- References -- Chapter 4 Surface Modification of Polymer Materials by Excimer Chapter 172 nm UV Light: A Review -- 4.1 Introduction -- 4.2 Wettability Measurements by Conventional Sessile Drop Technique -- 4.3 Preference for the Wilhelmy Technique in Wettability Analyses -- 4.4 UV Lithography Technique for Preparation of Mosaic Wettability Pattern -- 4.5 Chemical and Topographical Changes on Polymer Surfaces Due to UV Treatment -- 4.6 Determination of Surface Free Energy by Contact Angle Measurements -- 4.7 Effect of UV Treatment on Particle Adhesion -- 4.8 Improvement in Textile Performance by UV Treatment. |
4.9 Summary and Prospects -- Acknowledgements -- References -- Chapter 5 Corona Discharge Treatment for Surface Modification and Adhesion Improvement -- 5.1 Introduction -- 5.2 Historical Development of Corona Treatment Technique and Various Set-Ups Available -- 5.3 Factors Affecting the Outcome of Corona Treatment -- 5.3.1 Corona Dosage -- 5.3.2 Electrode Gap -- 5.4 Effects Produced by Corona Treatment -- 5.5 Surface Analysis of Corona-Treated Materials -- 5.5.1 Contact Angle Measurements -- 5.5.2 Surface Free Energy Determination -- 5.5.3 X-Ray Photoelectron Spectroscopy (XPS) Analysis -- 5.5.4 Atomic Force Microscopy (AFM) Analysis -- 5.5.5 Adhesion Property -- 5.6 Summary -- References -- Chapter 6 Adhesion Activation of Aramid Fibers for Industrial Use -- 6.1 Introduction -- 6.2 Adhesion Between Aramid Fibers and Rubber -- 6.2.1 Adhesion Activation Process -- 6.2.1.1 "Maturation" of the Adhesion Active Finish -- 6.2.1.2 Application and Curing -- 6.2.1.3 Resulting Chemical Surface Structure -- 6.2.1.4 Resulting Physical Surface Structure -- 6.2.2 RFL Dipping Process -- 6.2.2.1 Fiber-RFL Interface -- 6.2.2.2 RFL-Rubber Interface -- 6.3 Adhesion Between Aramid Fibers and Other Matrices -- 6.3.1 Thermoset Matrix -- 6.3.1.1 Micromechanical Testing -- 6.3.1.2 Macroscopic Adhesion and Composite Testing -- 6.3.2 Thermoplastic Matrix -- 6.4 Effect of Processing Oil on Adhesion -- 6.4.1 XPS Analysis -- 6.4.2 Adhesion to a Rubber Matrix -- 6.4.3 Adhesion to an Epoxy Matrix -- 6.5 Plasma |
|
|
|
|
|
|
|
|
Activation of Aramid Fibers -- 6.5.1 Experimental Details -- 6.5.2 Adhesion Results -- 6.5.2.1 Optimization Experiments -- 6.5.2.2 Adhesion of Plasma Activated Fiber Bundles -- 6.5.2.3 Adhesion of Plasma Activated Cords -- 6.5.2.4 Explanation of the Difference in Adhesion Between Fiber Bundles and Cords -- 6.5.3 Conclusions Regarding Plasma Activation for Industrial Use. |
6.5.3.1 Fiber Bundle Treatment -- 6.5.3.2 Cord Treatment -- 6.5.3.3 Matrices Other Than Rubber -- 6.6 Short-Cut Fibers -- 6.6.1 Applications in Rubber Matrix -- 6.6.2 Applications in Engineering Plastics -- 6.7 Summary and Prospects -- Acknowledgement -- References -- Chapter 7 Dual-Cured Hydrogels for Bioadhesives and Various Biomedical Applications -- List of Abbreviations -- 7.1 Introduction -- 7.2 Discussion -- 7.2.1 Curing Mechanisms -- 7.2.1.1 Free Radical and Coordination Mechanisms -- 7.2.1.2 Free Radical and Condensation Mechanisms -- 7.2.1.3 Coordination and Condensation Mechanisms -- 7.2.1.4 Free Radical and Ring Opening Mechanisms -- 7.2.1.5 Free Radical and Cycloaddition Mechanisms -- 7.2.1.6 Free Radical and Nucleophilic Addition Mechanisms -- 7.2.1.7 Nucleophilic Addition and Coordination Mechanisms -- 7.2.1.8 Condensation and Cycloaddition Mechanisms -- 7.2.1.9 Cycloaddition and Coordination Mechanisms -- 7.2.1.10 Coordination and Ring Opening Mechanisms -- 7.2.2 Processing -- 7.2.2.1 Photopatterning -- 7.2.2.2 3D Bioprinting -- 7.2.2.3 Injectable Hydrogels -- 7.2.3 Properties -- 7.2.4 Applications -- 7.3 Summary -- References -- Chapter 8 Non-Adhesive SLIPS-Like Surfaces: Fabrication and Applications -- List of Abbreviations -- 8.1 Introduction -- 8.2 Role of Contact Angle Hysteresis in Repelling Liquids -- 8.3 Non-Adhesive SLIPS-Like Surfaces -- 8.4 Applications -- 8.4.1 Anti-Biofouling/Anti-Fouling -- 8.4.2 Anti-Scaling -- 8.4.3 Liquid Transportation -- 8.4.4 Anti-Icing -- 8.4.5 Other Applications -- 8.5 Summary and Outlook -- Acknowledgments -- References -- Index -- EULA. |
|
|
|
|
|
| |