1.

Record Nr.

UNINA9910830564603321

Titolo

Enzymatic and chemical synthesis of nucleic acid derivatives / / edited by Jesus Fernandez-Lucas, Maria-Jose Camarasa Rius

Pubbl/distr/stampa

Wienhem, Germany : , : Wiley-VCH Verlag, , 2019

ISBN

3-527-81207-5

3-527-81209-1

3-527-81210-5

Edizione

[1st ed.]

Descrizione fisica

1 online resource (351 pages)

Disciplina

574.8732

Soggetti

Nucleic acids - Synthesis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Enzymatic Synthesis of Nucleoside Analogues by Nucleoside Phosphorylases -- 1.1 Introduction -- 1.1.1 Nucleosides and Nucleoside Analogues -- 1.1.2 Enzymes Involved in the Enzymatic Synthesis of Nucleoside Analogues -- 1.2 Nucleoside Phosphorylases -- 1.2.1 Classification and Substrate Spectra of Nucleoside Phosphorylases -- 1.2.1.1 Nucleoside Phosphorylase‐I Family -- 1.2.1.2 Nucleoside Phosphorylase‐II Family -- 1.2.2 Limitations in the Current Classification -- 1.2.3 Reaction Mechanism -- 1.2.4 Domain Structure and Active Site Residues of Nucleoside Phosphorylases -- 1.2.4.1 NP‐I Family Members -- 1.2.4.2 NP‐II Family Members -- 1.3 Enzymatic Approaches to Produce Nucleoside Analogues Using Nucleoside Phosphorylases -- 1.3.1 One‐pot Two‐Step Transglycosylation Reaction -- 1.3.2 Pentofuranose‐1‐phosphate as Universal Glycosylating Substrate for Nucleoside Phosphorylase (NP) -- 1.3.2.1 Nucleoside Synthesis from Chemically Synthesized Pentose‐1P -- 1.3.2.2 Nucleosides Synthesis from d‐Glyceraldehyde‐3‐phosphate -- 1.3.2.3 Nucleoside Synthesis from d‐Pentose -- 1.3.2.4 Nucleoside Synthesis from Enzymatically Produced Pentose‐1P -- 1.4 Approaches to Produce Nucleoside Analogues -- 1.4.1 Whole Cell Catalysis -- 1.4.2 Crude Enzyme Extract -- 1.4.3 Application of Purified Enzymes -- 1.4.3.1 Immobilized Enzymes -- 1.4.3.2 Enzyme Reactors -- 1.5



Upscaling Approaches for the Production of Nucleoside Analogues -- 1.6 Production of Pharmaceutically Active Compounds by Nucleoside Phosphorylases -- 1.7 Outlook for the Application of Nucleoside Phosphorylase in the Production of Nucleoside Analogues -- References -- Chapter 2 Enzymatic Phosphorylation of Nucleosides -- 2.1 Introduction -- 2.2 Nonspecific Acid Phosphatases (NSAPs) -- 2.3 Deoxyribonucleoside Kinases (dNKs) -- 2.4 Conclusion.

References -- Chapter 3 Enzymatic Synthesis of Nucleic Acid Derivatives Using Whole Cells -- 3.1 Introduction -- 3.2 Nucleoside Synthesis Mediated by Microbial Nucleoside Phosphorylases -- 3.3 Nucleoside Analogues Synthesis by the Combined Action of Microbial Nucleoside Phosphorylases and Other Enzymes -- 3.3.1 Nucleoside Phosphorylases Coupled to Deaminases -- 3.3.2 Nucleoside Phosphorylases Coupled to Phosphopentomutase -- 3.3.3 Nucleoside Phosphorylases Coupled to Phosphopentomutase and Other Enzymes -- 3.3.4 Nucleoside Phosphorylases Coupled to Other Enzymes -- 3.4 Chemoenzymatic Preparation of Nonconventional Nucleoside Analogues Involving Whole Cell Biocatalyzed Key Steps -- 3.4.1 l‐Nucleosides -- 3.4.2 Carbocyclic Nucleosides -- 3.4.3 C‐Nucleosides -- 3.5 Nucleoside Prodrugs Preparation by Whole Cell Systems -- 3.5.1 Acylnucleosides -- 3.5.2 Nucleoside Phosphates -- 3.6 Other Nucleoside Derivatives -- 3.6.1 NDP -- 3.6.2 NDP‐sugar -- 3.7 Perspectives -- References -- Chapter 4 Enzymatic Synthesis of Nucleic Acid Derivatives by Immobilized Cells -- 4.1 Introduction -- 4.2 Nucleic Acid Derivatives -- 4.3 Whole Cell Immobilization: Generalities -- 4.4 Synthesis of Nucleosides by Immobilized Cells -- 4.4.1 Natural Nucleoside Synthesis -- 4.4.2 Nucleoside Analogues Synthesis -- 4.4.3 Nucleoside Analogues Derivatives Synthesis -- 4.5 Conclusion -- References -- Chapter 5 Enzymatic Synthesis of Nucleic Acid Derivatives by Immobilized Enzymes -- 5.1 Introduction -- 5.2 Immobilized Glycosyltransferases -- 5.2.1 Immobilized Nucleoside Phosphorylases -- 5.2.1.1 Stabilization of Nucleoside Phosphorylases by Immobilization -- 5.2.1.2 Synthesis of Nucleosides Catalyzed by Immobilized Nucleoside Phosphorylases -- 5.2.2 Immobilized Nucleoside 2'‐Deoxyribosyltransferases -- 5.2.2.1 Stabilization of Nucleoside 2'‐Deoxyribosyltransferases by Immobilization.

5.2.2.2 Synthesis of Nucleosides Catalyzed by Immobilized 2'‐Deoxyribosyltransferases -- 5.2.3 Immobilized Nucleobase Phosphoribosyltransferases -- 5.3 Immobilized Nucleoside Oxidase -- 5.4 Immobilized Hydrolases -- 5.4.1 Immobilized Lipases -- 5.4.2 Immobilized Proteases -- 5.4.3 Immobilized Esterases -- 5.4.4 Immobilized Deaminases -- 5.4.5 Immobilized S‐Adenosylhomocysteine Hydrolases -- 5.5 Immobilized Phosphopentomutases -- 5.6 Immobilized Deoxyribonucleoside Kinases -- References -- Chapter 6 Synthesis of Nucleic Acid Derivatives by Multi‐Enzymatic Systems -- 6.1 Multi‐Enzymatic Systems in Biosynthesis -- 6.2 General Overview of Multi‐Enzymatic Synthesis of Nucleic Acid Derivatives -- 6.3 Multi‐Enzymatic Synthesis of Nucleosides and Their Derivatives -- 6.3.1 Multi‐Enzymatic Synthesis of Nucleosides and Their Analogues by Nucleoside Phosphorylase -- 6.3.2 Transglycosylation Coupled with Xanthine Oxidase -- 6.3.3 Transglycosylation Reactions Coupled with Deamination -- 6.3.4 ADase in Combination with Lipase -- 6.3.5 Esterification of Nucleosides -- 6.3.6 Multi‐Enzymatic Synthesis of Fluorine Nucleosides -- 6.3.7 Multi‐Enzymatic Synthesis of Nucleosides via R5P -- 6.3.8 Other Reactions -- 6.4 Multi‐Enzymatic Synthesis of Nucleotides and Their Derivatives -- 6.4.1 Multi‐Enzymatic Synthesis of NMPs and dNMPs -- 6.4.2 Multi‐Enzymatic Synthesis of NTPs and dNTPs -- 6.4.3 Multi‐Enzymatic



Synthesis of NDP‐Sugars and Other NDP Derivatives -- 6.5 Conclusion -- References -- Chapter 7 Enzymatic Synthesis Using Polymerases of Modified Nucleic Acids and Genes -- 7.1 Introduction -- 7.2 Types of XNA Biomolecules -- 7.3 Enzymatic Synthesis of XNA and DNA Polymerases -- 7.4 Base‐Modified XNAs (Base‐XNAs) -- 7.4.1 Nucleobase Analogues -- 7.4.1.1 Non‐Canonical Nucleotides -- 7.4.1.2 Amino‐acid‐Like Groups -- 7.4.1.3 Functional Tags -- 7.4.2 Unnatural Base Pairs.

7.4.2.1 Hydrogen‐Bonding Base Pairs -- 7.4.2.2 Hydrophobic Base Pairs -- 7.5 Sugar‐Modified XNAs (Sugar‐XNAs) -- 7.5.1 Pentose‐XNA -- 7.5.2 2'‐Ribose‐XNA -- 7.6 Phosphodiester Backbone‐XNA -- 7.7 A Mirror‐Image l‐DNA -- 7.8 Conclusions -- References -- Chapter 8 Synthetic Approaches to the Fleximer Class of Nucleosides - A Historic Perspective -- 8.1 Distal Fleximers -- 8.1.1 Ribose Distal Fleximers -- 8.1.2 2'‐Deoxyribose Distal Fleximers -- 8.1.3 2'‐Modified Distal Fleximers -- 8.2 Proximal Fleximers -- 8.2.1 Ribose Proximal Fleximers -- 8.2.2 2'‐Deoxyribose Proximal Fleximers -- 8.2.3 Carbocyclic Proximal Fleximers -- 8.2.4 Proximal Fleximers from Other Groups -- 8.3 "Reverse" Fleximers -- 8.4 Acyclic Fleximers -- 8.5 Conclusion -- References -- Chapter 9 Synthesis of Oligonucleotides Carrying Nucleic Acid Derivatives of Biomedical and Structural Interest -- 9.1 Introduction -- 9.2 Oligonucleotides Carrying the DNA Lesion O6‐Alkylguanine -- 9.3 The Effect of Chemical Modifications in Non‐Canonical DNA Structures -- 9.3.1 Triplex‐Forming Oligonucleotides -- 9.3.2 G‐quadruplex‐Forming Oligonucleotides -- 9.3.3 Oligonucleotides Forming i‐Motif Structures -- 9.4 Modified siRNAs for Gene Silencing -- 9.4.1 Modifications of the 3'‐Overhangs -- 9.4.2 Modifications of the 5'‐End -- References -- Chapter 10 Synthesis of Carbohydrate-Oligonucleotide Conjugates and Their Applications -- 10.1 Introduction -- 10.2 Synthesis of COCs -- 10.2.1 On‐Support Synthesis -- 10.2.1.1 Phosphoramidite Chemistry -- 10.2.1.2 Derivatization of Nucleoside Base Residues -- 10.2.1.3 Oximation Chemistry -- 10.2.1.4 Amide Chemistry -- 10.2.1.5 Urea Chemistry -- 10.2.1.6 CuAAC Chemistry -- 10.2.2 Solution‐Phase Conjugation -- 10.2.2.1 Disulfide Formation -- 10.2.2.2 Nucleophilic Addition on Unsaturated Carbon -- 10.2.2.3 Carbonyl Addition-Elimination Reaction.

10.2.2.4 CuAAC Chemistry -- 10.2.2.5 Diazocoupling Reaction -- 10.2.2.6 Amide Bond Formation -- 10.2.2.7 Enzymatic Incorporation of Saccharides or Nucleotides -- 10.3 Synthesis of Glycocluster Oligonucleotides -- 10.3.1 dsDNA Scaffolds -- 10.3.2 Non‐Canonical DNA Scaffolds (G4 and three‐Way Junction) -- 10.3.3 Organic Spacer Scaffolds -- 10.3.4 Biomolecules as Scaffolds -- 10.4 Applications of COCs -- 10.4.1 Improving Cellular Uptake -- 10.4.2 Molecular Interactions Probes -- 10.4.3 Lectin Binding and Glycoarrays -- 10.5 Outlook -- References -- Chapter 11 Advances in Light‐Directed Synthesis of High‐Density Microarrays and Extension to RNA and 2'F‐ANA Chemistries -- 11.1 Introduction -- 11.2 Phosphoramidite Chemistry Applied to the Photolithographic Synthesis of Microarrays -- 11.3 Recent Improvements in the Synthesis of DNA Microarrays -- 11.4 Synthesis of RNA Microarrays -- 11.5 Enzymatic Approaches to RNA Array Synthesis -- 11.6 Synthesis of 2'F‐ANA Microarrays -- 11.7 Conclusion and Outlook -- References -- Chapter 12 SAMHD1‐Mediated Negative Regulation of Cellular dNTP Levels: HIV‐1, Innate Immunity, and Cancers -- 12.1 Cellular dNTP Concentrations -- 12.2 SAMHD1 and Negative Regulation of Cellular dNTPs -- 12.3 SAMHD1 Substrates, Activators, and Inhibitors -- 12.4 SAMHD1 and HIV‐1 Reverse Transcription -- 12.5 SAMHD1 Mutations and Innate Immunity



-- 12.6 SAMHD1 and Cancers -- 12.7 Summary -- Acknowledgment -- References -- Index -- EULA.