|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830531003321 |
|
|
Titolo |
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-82585-1 |
3-527-82584-3 |
|
|
|
|
|
|
|
|
Edizione |
[1st edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (606 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Photovoltaic cells |
Perovskite (Mineral) - Industrial applications |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editor -- Chapter 1 Introduction -- 1.1 Hybrid Perovskite Solar Cells -- 1.2 Unique Natures of Hybrid Perovskites -- 1.2.1 Notable Characteristics of Hybrid Perovskites -- 1.2.2 Fundamental Properties of MAPbI3 -- 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? -- 1.3 Advantages of Hybrid Perovskite Solar Cells -- 1.3.1 Band Gap Tunability -- 1.3.2 High Voc -- 1.3.3 Low Temperature Coefficient -- 1.4 Challenges for Hybrid Perovskites -- 1.4.1 Requirement of Improved Stability -- 1.4.2 Large‐Area Solar Cells -- 1.4.3 Toxicity of Pb and Sn Compounds -- 1.5 Overview of this Book -- Acknowledgment -- References -- Chapter 2 Overview of Hybrid Perovskite Solar Cells -- 2.1 Introduction -- 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics -- 2.3 Semiconductor Properties of Organo Lead Halide Perovskites -- 2.4 Working Principle of Perovskite Photovoltaics -- 2.5 Compositional Design of the Halide Perovskite Absorbers -- 2.6 Strategy for Stabilizing Perovskite Solar Cells -- 2.7 All Inorganic and Lead‐Free Perovskites -- 2.8 Development of High‐Efficiency Tandem Solar Cells -- 2.9 Conclusion and Perspectives -- References -- Part I Characteristics of Hybrid Perovskites -- Chapter 3 Crystal Structures -- 3.1 What Is Hybrid Perovskite? -- 3.2 Structures of Hybrid Perovskite Crystals -- 3.2.1 Crystal Structure of MAPbI3 -- 3.2.2 |
|
|
|
|
|
|
|
|
|
Lattice Parameters of Hybrid Perovskites -- 3.2.3 Secondary Phase Materials -- 3.3 Tolerance Factor -- 3.3.1 Tolerance Factor of Hybrid Perovskites -- 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites -- 3.4 Phase Change by Temperature -- 3.5 Refined Structures of Hybrid Perovskites -- 3.5.1 Orientation of Center Cations -- 3.5.2 Relaxation of Center Cations -- Acknowledgment -- References -- Chapter 4 Optical Properties. |
4.1 Introduction -- 4.2 Light Absorption in MAPbI3 -- 4.2.1 Visible/UV Region -- 4.2.2 IR Region -- 4.2.3 THz Region -- 4.3 Band Gap of Hybrid Perovskites -- 4.3.1 Band Gap Analysis of MAPbI3 -- 4.3.2 Band Gap of Basic Perovskites -- 4.3.3 Band Gap Variation in Perovskite Alloys -- 4.4 True Absorption Coefficient of MAPbI3 -- 4.4.1 Principles of Optical Measurements -- 4.4.2 Interpretation of α Variation -- 4.5 Universal Rules for Hybrid Perovskite Optical Properties -- 4.5.1 Variation with Center Cation -- 4.5.2 Variation with Halide Anion -- 4.6 Subgap Absorption Characteristics -- 4.7 Temperature Effect on Absorption Properties -- 4.8 Excitonic Properties of Hybrid Perovskites -- References -- Chapter 5 Physical Properties Determined by Density Functional Theory -- 5.1 Introduction -- 5.2 What Is DFT? -- 5.2.1 Basic Principles -- 5.2.2 Assumptions and Limitations -- 5.3 Crystal Structures Determined by DFT -- 5.3.1 Hybrid Perovskite Structures -- 5.3.2 Organic‐Center Cations -- 5.4 Band Structures -- 5.4.1 Band Structures of Hybrid Perovskites -- 5.4.2 Direct-Indirect Issue of Hybrid Perovskite -- 5.4.3 Density of States -- 5.4.4 Effective Mass -- 5.5 Band Gap -- 5.5.1 What Determines Band Gap? -- 5.5.2 Effect of Center Cation -- 5.5.3 Effect of Halide Anion -- 5.6 Defect Physics -- Acknowledgment -- References -- Chapter 6 Carrier Transport Properties -- 6.1 Introduction -- 6.2 Carrier Properties of Hybrid Perovskites -- 6.2.1 Self‐Doping in Hybrid Perovskites -- 6.2.2 Effect of Carrier Concentration on Mobility -- 6.3 Carrier Mobility of MAPbI3 -- 6.3.1 Variation of Mobility with Characterization Method -- 6.3.2 Temperature Dependence -- 6.3.3 Effect of Effective Mass -- 6.3.4 What Determines Maximum Mobility of MAPbI3? -- 6.4 Diffusion Length -- 6.5 Carrier Transport in Various Hybrid Perovskites -- References. |
Chapter 7 Ferroelectric Properties -- 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells -- 7.2 Ferroelectricity -- 7.2.1 Crystallographic Considerations -- 7.2.2 Ferroelectricity in Thin Films -- 7.2.3 Crystallography of MAPbI3 Thin Films -- 7.3 Probing Ferroelectricity on the Microscale -- 7.3.1 Atomic Force Microscopy -- 7.3.2 Piezoresponse Force Microscopy -- 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM -- 7.3.4 Correlative Domain Characterization -- 7.3.4.1 Transmission Electron Microscopy -- 7.3.4.2 X‐ray Diffraction -- 7.3.4.3 Electron Backscatter Diffraction -- 7.3.4.4 Kelvin Probe Force Microscopy -- 7.3.5 Polarization Orientation -- 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films -- 7.4 Ferroelectric Poling of MAPbI3 -- 7.4.1 AC Poling of MAPbI3 -- 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale -- 7.4.3 Macroscopic Effects of Poling -- 7.5 Impact of Ferroelectricity on the Performance of Solar Cells -- 7.5.1 Pitfalls During Sample Measurements -- 7.5.2 Charge Carrier Dynamics in Solar Cells -- References -- Chapter 8 Photoluminescence Properties -- 8.1 Introduction -- 8.2 Overview of Luminescent Properties -- 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film -- 8.4 Time‐Resolved PL of a Hybrid Perovskite -- 8.5 PL Quantum Efficiency -- 8.6 Temperature‐Dependent PL -- 8.7 Material and Device Characterization by PL Spectroscopy -- 8.7.1 Degradation and Healing of Hybrid Perovskites -- 8.7.2 Charge Transfer Mechanism in Perovskite Solar |
|
|
|
|
|
|
|
Cell -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Role of Grain Boundaries -- 9.1 Introduction -- 9.2 Role of Grain Boundaries in Device Performance -- 9.2.1 Potential Barrier at GBs and Charge Transport -- 9.2.2 Engineering of GB Properties -- 9.3 Ion Migration Through Grain Boundaries. |
9.3.1 Enhanced Ion Transport at Grain Boundaries -- 9.3.2 Role of GBs for Ion Migration -- 9.4 Role of Grain Boundaries in Stability -- 9.4.1 MAPbI3 Hydrated Phase at GBs -- 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 -- References -- Chapter 10 Roles of Center Cations -- 10.1 Introduction -- 10.2 Cubic Perovskite Phase Tolerance Factor -- 10.3 Thin Film Stability -- 10.4 Optoelectronic Property Variations -- 10.5 Solar Cell Performance -- References -- Part II Hybrid Perovskite Solar Cells -- Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells -- 11.1 Introduction -- 11.2 Operation of Hybrid Perovskite Solar Cells -- 11.2.1 Operational Principle and Basic Structures -- 11.2.2 Band Alignment -- 11.3 Band Diagram of Hybrid Perovskite Solar Cells -- 11.3.1 Device Simulation -- 11.3.2 Experimental Observation -- 11.4 Refined Analyses of Hybrid Perovskite Solar Cells -- 11.4.1 Carrier Generation and Loss -- 11.4.2 Power Loss Mechanism -- 11.4.3 e‐ARC Software -- 11.5 What Determines Voc? -- 11.5.1 Effect of Interface -- 11.5.2 Effect of Passivation -- 11.5.3 Effect of Grain Boundary -- References -- Chapter 12 Efficiency Limits of Single and Tandem Solar Cells -- 12.1 Introduction -- 12.2 What Is the SQ Limit? -- 12.2.1 Physical Model -- 12.2.2 Blackbody Radiation -- 12.2.3 SQ Limit -- 12.3 Maximum Efficiencies of Perovskite Single Cells -- 12.3.1 Concept of Thin‐Film Limit -- 12.3.2 EQE Calculation Method -- 12.3.3 Maximum Efficiencies of Single Solar Cells -- 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices -- 12.4 Maximum Efficiency of Tandem Cells -- 12.4.1 Optical Model and Assumptions -- 12.4.2 Calculation of Tandem‐Cell EQE Spectra -- 12.4.3 Maximum Efficiencies of Tandem Devices -- 12.4.4 Realistic Maximum Efficiency of Tandem Cell -- 12.5 Free Software for Efficiency Limit Calculation -- References. |
Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells -- 13.1 Introduction -- 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.3.1 Organic A‐Cations -- 13.3.2 Inorganic A‐Cations -- 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.4.1 Traditional Fabrication Approach -- 13.4.2 Emerging Fabrication Technologies -- 13.5 Charge Transport Materials -- 13.6 Surface Passivation -- 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells -- 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells -- References -- Chapter 14 Tin Halide Perovskite Solar Cells -- 14.1 Introduction -- 14.1.1 Device Structure and Operating Principle -- 14.1.2 Crystal Structure -- 14.2 Tin Perovskite Solar Cells -- 14.2.1 Intrinsic Properties -- 14.2.2 Carrier Lifetime and Diffusion Length -- 14.3 The Status of Sn Perovskite Solar Cells -- 14.3.1 Different Type of Sn Perovskite Solar Cells -- 14.3.1.1 CsSnI3 -- 14.3.1.2 MASnI3 -- 14.3.1.3 FASnI3 -- 14.3.1.4 FAxMA1−xSnI3 -- 14.3.1.5 2D/3D FASnI3 -- 14.3.1.6 Sn-Ge mixed PSCs -- 14.3.2 Strategies to Improve the Efficiency -- 14.3.2.1 Film Fabrication Methods -- 14.3.2.2 Use of Reducing Agents -- 14.3.2.3 Doping Effect of Large Organic Cations -- 14.3.2.4 Device Engineering and Lattice Relaxation -- 14.4 Sn-Pb Perovskite Solar Cells -- 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) -- 14.4.2 Physical Properties -- 14.4.2.1 Intrinsic Carrier Concentration -- 14.4.2.2 Carrier Lifetime and Diffusion Length -- |
|
|
|
|
|
|
|
|
14.5 The Status of Sn-Pb Perovskite Solar Cells -- 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells -- 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3. |
14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3. |
|
|
|
|
|
| |