1.

Record Nr.

UNINA9910830484903321

Titolo

Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec

Pubbl/distr/stampa

London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020]

©2020

ISBN

1-5231-4364-9

1-119-81804-4

1-119-81805-2

Descrizione fisica

1 online resource (375 pages) : illustrations

Disciplina

621.31242

Soggetti

Sodium ion batteries

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials -- 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn,Co,M]O2 -- 1.4.3. P2-Na2/3[Mn,Fe,M]O2 -- 1.4.4. P2-Na2/3[Ni,Mn,M]O2 -- 1.5. Summary and prospects -- 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2



(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications -- 2.3.1. Structural description and compositional diversity.

2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure -- 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries -- 4.1. Introduction -- 4.2. Insertion materials -- 4.2.1. Insertion anodes based on titanium oxide and titanates -- 4.2.2. Insertion anodes based on transition metal chalcogenides -- 4.2.3. Insertion MXene-based anodes -- 4.2.4. Insertion organic anodes -- 4.3. Negative electrode materials based on electrochemical alloying with sodium -- 4.3.1. Silicon and germanium -- 4.3.2. Tin -- 4.3.3. Phosphorus -- 4.3.4. Antimony -- 4.3.5. Other post-transition metal elements -- 4.4. Negative electrode materials based on conversion reactions -- 4.4.1. Reaction mechanisms of CM -- 4.4.2. Approaches toward efficient anode CM for NIB -- 4.5. Conclusion -- 4.6. References -- 5. Electrolytes for Sodium Batteries -- 5.1. Introduction.

5.2. Liquid and solid electrolytes for sodium batteries -- 5.2.1. Organic liquid electrolytes -- 5.2.2. IL-based electrolytes -- 5.2.3. Hybrid electrolytes -- 5.2.4. Effects of additives and impurities -- 5.2.5. Solid-state electrolytes -- 5.3. Properties of IL-based electrolytes for Na batteries -- 5.3.1. Physical properties -- 5.3.2. Thermal stability -- 5.3.3. Electrochemical stability -- 5.4. Modeling IL-based electrolytes -- 5.5. Conclusion and future perspectives -- 5.6. Abbreviations -- 5.7. References -- 6. Solid Electrolyte Interphase in Na-ion batteries -- 6.1. Introduction -- 6.1.1. The solid electrolyte interphase -- 6.1.2. Characterization of the SEI -- 6.2. Physical properties of the Na-ion SEI -- 6.2.1. Electrochemical stability -- 6.2.2. Mechanical properties -- 6.2.3. Dissolution of SEI components -- 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes -- 6.3.1. Formation and composition -- 6.3.2. Resistance -- 6.4. Conclusion -- 6.5. References -- 7. Batteries Containing Prussian Blue Analogue Electrodes -- 7.1. Introduction -- 7.1.1. Chapter introduction -- 7.1.2. History of Prussian blue -- 7.1.3. Physical characteristics: structure, composition and morphology -- 7.1.4. Synthetic methods -- 7.2. Electrochemistry of PBAs -- 7.2.1. Mechanism and resulting characteristics -- 7.2.2. Reaction potentials -- 7.2.3. PBA cathodes -- 7.2.4. PBA anodes -- 7.3. Prussian blue batteries -- 7.3.1. Cells containing two PBA electrodes -- 7.3.2. Cells containing one PBA electrode -- 7.3.3. Challenges for PBA batteries -- 7.4. Conclusion and future outlook -- 7.5. References --



8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Active materials -- 8.2.2. Electrode fabrication -- 8.2.3. Pouch cell fabrication.

8.2.4. Faradion electrolyte -- 8.3. Cell performance -- 8.3.1. Half-cell cycling -- 8.3.2. Full Na-ion cell cycling: curves and stability -- 8.3.3. Rate capability -- 8.3.4. Temperature studies -- 8.3.5. Three-electrode cell studies -- 8.4. Safety and zero energy storage and transportation -- 8.5. Scale-up and prototyping -- 8.6. Demonstrators: stacks and packs -- 8.7. Business and IP strategy -- 8.8. Cost analysis -- 8.9. Future developments -- 8.10. Conclusion -- 8.11. Acknowledgments -- 8.12. References -- List of Authors -- Index -- EULA.