1.

Record Nr.

UNINA9910830467103321

Autore

Barton

Titolo

Physical and Hydrologic Flow Properties of Fractures Las Vegas, Nevada~%#~151;zion Canyon, Utah~%#~151;grand Canyon, Arizona~%#~151;yucca Mountain, Nevada, Field Trip T385

Pubbl/distr/stampa

[Place of publication not identified], : American Geophysical Union, 1991

ISBN

1-118-66739-5

Descrizione fisica

1 online resource (ix, 36 pages) : illustrations

Collana

Field trip guidebook (International Geological Congress (28th : 1989 : Washington, D.C.)) ; ; T385

Disciplina

551.49

Soggetti

Groundwater flow

Groundwater flow - Arizona

Groundwater flow - Nevada

Groundwater flow - Utah

Faults (Geology)

Joints (Geology)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.

Sommario/riassunto

Published by the American Geophysical Union as part of the Field Trip Guidebooks Series, Volume 385.Fractures are one of the most abundant structures in geology and are found in almost all rocks and soils at or near the Earth's surface. They are found over a wide range of length scales, from micro-fractures within mineral grams (micro-meters) to oceanic-intraplate fractures as much as 5000 km in length. The important role of fractures in fluid transport in the crust has long been recognized by geologists who have studied dikes (fracture conduits for flow of igneous rocks) and mineral veins fracture conduits for precipitation from aqueous Fluids. In studying these paleo-flow systems, little attention has been given to quantification of the flow properties of the system. Until two decades ago, hydrologists (Long, 1983) and petroleum-reservoir engineers (Nelson, 1985) studying fluid flow in rock had recognized the role of fractures only qualitatively.



Quantitatively, the mathematics of fracture flow had been considered intractable while the mathematics of porous-media flow through the rock matrix had been developed and refined for almost one hundred ears. Direct observation of the flow properties of rock at field scales demonstrated the inadequacy of the porous media models beyond the scale of laboratory samples. The hydraulic conductivity of fractured bulk rock has been measured to be as much as 8 orders of magnitude greater than matrix hydraulic conductivity measured in laboratory samples of the same intact rock. Clearly, fractures are primary conduits for fluid flow in rock at time scales of economic and practical interest. Quantitative understanding of the physics of flow in individual fractures and fracture networks has become an important research topic with direct applications to contemporary and paleo flow systems.