1.

Record Nr.

UNINA9910830397403321

Autore

Schlegel Christian B.

Titolo

Trellis and turbo coding : iterative and graph-based error control coding / / Christian B. Schlegel, Lance C. Pérez

Pubbl/distr/stampa

Piscataway, NJ : , : IEEE Press

Hoboken, New Jersey : , : Wiley, , [2015]

©2015

ISBN

1-119-10632-X

1-119-10631-1

1-119-10633-8

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (521 p.)

Collana

IEEE series on digital & mobile communication

Disciplina

621.382/1

Soggetti

Error-correcting codes (Information theory)

Trellis-coded modulation

Digital communications

Coding theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

TRELLIS AND TURBO CODING; Contents; 1 Introduction; 1.1 Modern Digital Communications; 1.2 The Rise of Digital Communications; 1.3 Communication Systems; 1.4 Error Control Coding; 1.5 Bandwidth, Power, and Complexity; 1.6 A Brief History-The Drive Towards Capacity; 2 Communications Basics; 2.1 The Probabilistic Viewpoint; 2.2 Vector Communication Channels; 2.3 Optimum Receivers; 2.4 Matched Filters; 2.5 Message Sequences; 2.6 The Complex Equivalent Baseband Model; 2.7 Spectral Behavior; 2.8 Advanced Modulation Methods; 2.8.1 OFDM; 2.8.2 Multiple Antenna Channels (MIMO Channels)

2.9 A Communications System Case Study2.10 Appendix 2.A; 3 Trellis-Coded Modulation; 3.1 An Introductory Example; 3.2 Construction of Codes; 3.3 Lattices; 3.4 Lattice Formulation of Trellis Codes; 3.5 Rotational Invariance; 3.6 V.fast; 3.7 The IEEE 802.3an Standard; 3.8 Historical Notes; 4 Trellis Representations; 4.1 Preliminaries; 4.2 The Parity-Check Matrix; 4.3 Parity-Check Trellis Representations; 4.4



Convolutional Codes and Their Trellis; 4.5 Minimal Trellises; 4.6 Minimum-Span Generator Matrices; 4.7 Systematic Construction of the PC-Trellis; 4.8 Tail-Biting Trellises

4.9 The Minimal Trellis of Convolutional Codes4.10 Fundamental Theorems from Basic Algebra; 4.11 Systematic Encoders; 4.12 Maximum Free-Distance Convolutional Codes; 4.13 The Squaring Construction and the Trellis of Lattices; 4.14 The Construction of Reed-Muller Codes; 4.15 A Decoding Example; 4.16 Polar Codes and Their Relationship to RM Codes; Appendix 4.A; 5 Trellis and Tree Decoding; 5.1 Background and Introduction; 5.2 Tree Decoders; 5.3 The Stack Algorithm; 5.4 The Fano Algorithm; 5.5 The M-Algorithm; 5.6 Maximum Likelihood Decoding; 5.7 A Posteriori Probability Symbol Decoding

5.8 Log-APP and Approximations5.9 Error Analysis and Distance Spectrum; 5.10 Random Coding Analysis of Optimal Decoding; 5.11 Random Coding Analysis of Sequential Decoding; 5.12 Some Final Remarks; 6 Low-Density Parity-Check Codes; 6.1 Introduction; 6.2 LDPC Codes and Graphs; 6.3 LDPC Decoding via Message Passing; 6.4 Analysis Techniques; 6.4.1 (Error) Probability Evolution for Binary Erasure Channels; 6.4.2 Error Mechanism of LDPCs on BECs; 6.4.3 Binary Symmetric Channels and the Gallager Algorithms; 6.4.4 The AWGN Channel; 6.5 Code Families and Construction

6.5.1 Constructions with Permutation Matrices6.5.2 Cycle Reduction Design; 6.5.3 RS-based Construction; 6.5.4 Repeat-Accumulate Codes; 6.6 Encoding of LDPC Codes; 6.6.1 Triangular LDPC Codes; 6.6.2 Specialized LDPC Codes; 6.6.3 Approximate Triangularization; Appendix 6.A; 7 Error Floors; 7.1 The Error Floor Problem; 7.2 Dynamics of the Absorption Sets; 7.3 Code Design for Low Error Floors; 7.4 Impact of the Decoding Algorithm; 7.5 Importance Sampling (IS); 7.6 Computing Error Rates via Importance Sampling; 8 Turbo Coding: Basic Principles; 8.1 Introduction

8.2 Parallel Concatenated Convolutional Codes

Sommario/riassunto

This new edition has been extensively revised to reflect the progress in error control coding over the past few years. Over 60% of the material has been completely reworked, and 30% of the material is original.<br /> <ul> <li>Convolutional, turbo, and low density parity-check (LDPC) coding and polar codes in a unified framework</li> <li>Advanced research-related developments such as spatial coupling</li> <li>A focus on algorithmic and implementation aspects of error control coding</li> </ul>