|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830394703321 |
|
|
Autore |
Chinesta Francisco |
|
|
Titolo |
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : ISTE |
|
Hoboken, N.J., : Wiley, 2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-61690-1 |
1-299-31421-X |
1-118-61668-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (255 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
624.1/7015118 |
624.17015118 |
|
|
|
|
|
|
|
|
Soggetti |
|
Materials - Mechanical properties - Mathematical models |
Numerical analysis |
Numbers, Natural |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [227]-238) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization |
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant |
|
|
|
|