|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830365503321 |
|
|
Autore |
Tuffery Stéphane |
|
|
Titolo |
Deep learning : from big data to artificial intelligence with R / / Stéphane Tufféry |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chichester, West Sussex : , : Wiley, , 2023 |
|
|
|
|
|
|
|
ISBN |
|
1-119-84504-1 |
1-119-84502-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (542 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Deep learning (Machine learning) |
Big data - Statistical methods |
R (Computer program language) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Acknowledgements -- Introduction -- Chapter 1 From Big Data to Deep Learning -- 1.1 Introduction -- 1.2 Examples of the Use of Big Data and Deep Learning -- 1.3 Big Data and Deep Learning for Companies and Organizations -- 1.3.1 Big Data in Finance -- 1.3.1.1 Google Trends -- 1.3.1.2 Google Trends and Stock Prices -- 1.3.1.3 The quantmod Package for Financial Analysis -- 1.3.1.4 Google Trends in R -- 1.3.1.5 Matching Data from quantmod and Google Trends -- 1.3.2 Big Data and Deep Learning in Insurance -- 1.3.3 Big Data and Deep Learning in Industry -- 1.3.4 Big Data and Deep Learning in Scientific Research and Education -- 1.3.4.1 Big Data in Physics and Astrophysics -- 1.3.4.2 Big Data in Climatology and Earth Sciences -- 1.3.4.3 Big Data in Education -- 1.4 Big Data and Deep Learning for Individuals -- 1.4.1 Big Data and Deep Learning in Healthcare -- 1.4.1.1 Connected Health and Telemedicine -- 1.4.1.2 Geolocation and Health -- 1.4.1.3 The Google Flu Trends -- 1.4.1.4 Research in Health and Medicine -- 1.4.2 Big Data and Deep Learning for Drivers -- 1.4.3 Big Data and Deep Learning for Citizens -- 1.4.4 Big Data and Deep Learning in the Police -- 1.5 Risks in Data Processing -- 1.5.1 Insufficient Quantity of Training Data -- 1.5.2 Poor Data Quality -- 1.5.3 Non‐Representative Samples -- 1.5.4 Missing Values in the Data -- 1.5.5 Spurious Correlations -- 1.5.6 Overfitting |
|
|
|
|