|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830341303321 |
|
|
Autore |
Stoker J. J (James Johnston), <1905-> |
|
|
Titolo |
Differential geometry [[electronic resource] /] / [by] J. J. Stoker |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Wiley-Interscience, 1989, c1969 |
|
|
|
|
|
|
|
ISBN |
|
1-283-27398-5 |
9786613273987 |
1-118-16546-2 |
1-118-16547-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (428 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematics, v. 20 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Geometry, Differential |
Manifolds (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Wiley classics edition published in 1989." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 396-399) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Differential Geometry; CONTENTS; Chapter I Operations with Vectors; 1. The vector notation; 2. Addition of vectors; 3. Multiplication by scalars; 4. Representation of a vector by means of linearly independent vectors; 5. Scalar product; 6. Vector product; 7. Scalar triple product; 8. Invariance under orthogonal transformations; 9. Vector calculus; Chapter II Plane Curves; 1. Introduction; 2. Regular curves; 3. Change of parameters; 4. Invariance under changes of parameter; 5. Tangent lines and tangent vectors of a curve; 6. Orientation of a curve; 7. Length of a curve |
1. Regular curves2. Length of a curve; 3. Curvature of space curves; 4. Principal normal and osculating plane; 5. Binormal vector; 6. Torsion τ of a space curve; 7. The Frenet equations for space curves; 8. Rigid body motions and the rotation vector; 9. The Darboux vector; 10. Formulas for κ and τ; 11. The sign of τ; 12. Canonical representation of a curve; 13. Existence and uniqueness of a space curve for given κ (S), τ (S); 14. What about κ = 0?; 15. Another way to define space curves; 16. Some special curves; Chapter IV The Basic Elements of Surface Theory |
1. Regular surfaces in Euclidean space2. Change of parameters; 3. Curvilinear coordinate curves on a surface; 4. Tangent plane and |
|
|
|
|