|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830329303321 |
|
|
Autore |
Shick Paul Louis <1956-> |
|
|
Titolo |
Topology [[electronic resource] ] : point-set and geometric / / Paul L. Shick |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley-Interscience, c2007 |
|
|
|
|
|
|
|
ISBN |
|
1-283-30615-8 |
9786613306159 |
1-118-03158-X |
1-118-03058-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (291 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematics |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Algebraic topology |
Point set theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 263-264) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Topology: Point-Set and Geometric; CONTENTS; Foreword; Acknowledgments; 1 Introduction: Intuitive Topology; 1.1 Introduction: Intuitive Topology; 2 Background on Sets and Functions; 2.1 Sets; 2.2 Functions; 2.3 Equivalence Relations; 2.4 Induction; 2.5 Cardinal Numbers; 2.6 Groups; 3 Topological Spaces; 3.1 Introduction; 3.2 Definitions and Examples; 3.3 Basics on Open and Closed Sets; 3.4 The Subspace Topology; 3.5 Continuous Functions; 4 More on Open and Closed Sets and Continuous Functions; 4.1 Introduction; 4.2 Basis for a Topology; 4.3 Limit Points; 4.4 Interior, Boundary and Closure |
4.5 More on Continuity5 New Spaces from Old; 5.1 Introduction; 5.2 Product Spaces; 5.3 Infinite Product Spaces (Optional); 5.4 Quotient Spaces; 5.5 Unions and Wedges; 6 Connected Spaces; 6.1 Introduction; 6.2 Definition, Examples and Properties; 6.3 Connectedness in the Real Line; 6.4 Path-connectedness; 6.5 Connectedness of Unions and Finite Products; 6.6 Connectedness of Infinite Products (Optional); 7 Compact Spaces; 7.1 Introduction; 7.2 Definition, Examples and Properties; 7.3 Hausdorff Spaces and Compactness; 7.4 Compactness in the Real Line; |
|
|
|
|