|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830249703321 |
|
|
Titolo |
Clouds and Their Climatic Impact : Radiation, Circulation, and Precipitation / / edited by Sylvia C. Sullivan and Corinna Hoose |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, NJ : , : Wiley-American Geophysical Union, , [2024] |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-119-70035-3 |
1-119-70033-7 |
|
|
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (368 pages) |
|
|
|
|
|
|
Collana |
|
Geophysical Monograph Series ; ; Volume 281 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Science of Cloud and Climate Science: An Analysis of the Literature Over the Past 50 Years -- 1.1 Research on Clouds and Climate -- 1.1.1 Science of Science for Clouds and Climate -- 1.1.2 Publication Data and Methods -- 1.2 Publications on Clouds and Climate -- 1.2.1 Citation and Readability -- 1.3 The Role of Clouds in Radiation, Circulation, and Precipitation -- 1.4 Methodology in Clouds and Climate -- 1.4.1 Techniques -- 1.4.2 Authorship -- 1.5 Summary and Outlook -- Acknowledgments -- Availability Statement -- References -- Part I Clouds and Radiation -- Chapter 2 An Overview of Aerosol-Cloud Interactions -- 2.1 Introduction and Motivation -- 2.1.1 The Importance of Aerosol‐Cloud Interactions for Climate -- 2.1.2 Outline and Aims of this Review -- 2.2 How aerosols affect different cloud types -- 2.3 Aerosol Activation -- 2.4 Warm Cloud Albedo -- 2.5 Approaches to Determining Susceptibility -- 2.6 New Methodological Approaches -- 2.6.1 Gaussian‐Process Emulation to Address State Dependence -- 2.6.2 Tendency Emulation to Address Time Dependence of Adjustments -- 2.6.3 Causality of LWP Adjustments -- 2.6.4 Causality Inference from Transient Events -- 2.6.5 Ensemble Approaches to Uncertainty Quantification and Reduction in GCMs -- 2.6.6 Regime Classification -- 2.7 Aerosol Effects on Ice and Mixed‐ |
|
|
|
|
|
|
|
|
|
Phase Clouds -- 2.8 Semi‐Direct Effects -- 2.9 Field Experiments -- 2.10 New Satellite Products -- 2.11 Outlooks -- Acknowledgments -- References -- Chapter 3 Ice Crystal Complexity and Link to the Cirrus Cloud Radiative Effect -- 3.1 Introduction -- 3.2 Ice Crystal Morphological Complexity Across Scales -- 3.2.1 Types of Morphological Complexity -- 3.2.2 Complexity Metrics -- 3.3 Observations of Complex Crystals. |
3.3.1 Microscopic Observations of Ice Morphology Associated with Complexity -- 3.3.2 Deriving Mesoscopic Complexity from High‐Resolution Angular Light Scattering Patterns -- 3.3.3 Remote Sensing of Ice Crystal Complexity -- 3.3.4 Synthesis of Ice Crystal Complexity Observations -- 3.4 Light Scattering by Complex Crystals -- 3.4.1 Computer Simulation of Angular Light Scattering by Ice Crystals -- 3.4.2 In situ Observations of Ice Crystal Angular Light Scattering Functions and Ice Cloud Asymmetry Parameter -- 3.4.3 Ice Cloud Asymmetry Parameter Inferred from Space‐Borne Remote Sensing Observations -- 3.5 The Impact of Crystal Complexity on Ice Cloud Radiative Effect -- 3.5.1 Estimating Ice Cloud CRE -- 3.5.2 Uncertainty in Cirrus CRE Estimations Caused by Crystal Complexity -- 3.6 Conclusions -- 3.7 Recommendations for Future Work -- Acknowledgments -- References -- Chapter 4 Cloud-Radiation Interactions and Cloud-Climate Feedbacks From an Active-Sensor Satellite Perspective -- 4.1 Introduction -- 4.2 Cloud‐Radiation Interactions -- 4.2.1 Cloud Radiative Heating Rates -- 4.2.2 Cloud Radiative Effects as a Function of the Cloud Phase -- 4.2.3 Multilayered Clouds -- 4.3 Constraining Cloud Feedbacks -- 4.3.1 Different Cloud Feedbacks -- 4.3.2 Interannual Cloud Feedbacks -- 4.3.3 Sc and Shallow Cu Clouds -- 4.3.4 Inferring Low‐Cloud Feedbacks from Observations -- 4.3.5 Extratropical (Opacity) Cloud Feedbacks -- 4.3.6 High‐Level Cloud Feedbacks -- 4.3.7 Radiative Kernel‐Based Cloud Feedbacks -- 4.4 Summary -- Acknowledgments -- References -- Part II Cloud Types -- Chapter 5 A Review of the Factors Influencing Arctic Mixed‐Phase Clouds: Progress and Outlook -- 5.1 Introduction -- 5.2 The formation and characteristics of Arctic mixed‐phase clouds -- 5.3 Factors that control Arctic clouds -- 5.3.1 Thermodynamic Structure of the Arctic Atmosphere. |
5.3.2 Temperature Inversions -- 5.3.3 Moisture Inversions -- 5.3.4 Warm and Moist Air Intrusions -- 5.3.5 Large‐Scale Subsidence -- 5.3.6 Aerosol Particles -- 5.4 A brief survey of Arctic field campaigns targeting cloud‐controlling factors -- 5.4.1 Overview -- 5.5 Insights on Arctic Cloud‐Controlling Factors Gained from ACLOUD, PASCAL, and AFLUX -- 5.6 Outlook -- Acknowledgments -- References -- Chapter 6 Extratropical Cloud Feedbacks -- 6.1 Introduction -- 6.2 Consistent Features of the Observational Record -- 6.3 GCM Responses to Warming -- 6.4 Processes Contributing to Extratropical SW Cloud Feedback -- 6.4.1 Summary of Processes -- 6.4.2 Boundary‐Layer Cloud Changes -- 6.4.3 Ice, Liquid, and Mixed‐Phase -- 6.4.4 Hydrological Cycle Changes -- 6.4.5 Aerosol‐Cloud Interactions -- 6.4.6 Radiative Response to Cloud Changes -- 6.5 Prospects -- 6.5.1 Precipitation Efficiency -- 6.5.2 Aerosol‐Cloud Interactions -- 6.5.3 Boundary‐Layer Clouds in Cold Air Outbreaks -- 6.5.4 Improving Comparisons Between Models and Observations -- Acknowledgments -- Appendix -- References -- Chapter 7 Tropical Marine Low Clouds: Feedbacks to Warming and on Climate Variability -- 7.1 Introduction -- 7.1.1 Climatological Characteristics of Tropical Low Clouds and Their Impacts on Earth's Radiation Budget -- 7.1.2 The Simplest Model of the Marine Boundary Layer -- 7.1.3 How do Cloud‐Controlling Factors Impact Tropical Low Clouds? -- 7.2 RESPONSE OF TRADE CUMULUS |
|
|
|
|
|
|
|
AND STRATOCUMULUS TO WARMING -- 7.2.1 Forcing‐Feedback Studies -- 7.2.2 Constraints from Observed Natural Variability -- 7.2.3 Why the Trade Cumulus Feedback likely Differs from that of Stratocumulus -- 7.2.4 Outlook -- 7.3 ROLE OF LOW CLOUDS IN VARIATIONS IN CLIMATE -- 7.3.1 Cloud‐Ocean Coupling -- 7.3.2 Low‐Cloud Feedbacks and Patterns of Sea Surface Temperature. |
7.4 MESOSCALE ORGANIZATION AND POSSIBLE IMPLICATIONS FOR CLOUD FEEDBACKS -- 7.4.1 Observed Mesoscale Organization of Low Clouds -- 7.4.2 Unknown Mesoscale Organization Feedbacks -- 7.5 RECENT ADVANCES IN AND PROSPECTS FOR HIGH‐RESOLUTION MODELING OF LOW CLOUDS -- 7.5.1 Limitations of GCMs -- 7.5.2 Current State of High‐Resolution Models -- 7.5.3 New Challenges -- Acknowledgments -- References -- Chapter 8 Mechanisms for the Self-Organization of Tropical Deep Convection -- 8.1 Introduction -- 8.2 Observing large‐scale tropical cloud clustering -- 8.3 Organizational mechanisms -- 8.3.1 Feedbacks Between Radiation, Moisture, and Circulation -- 8.3.2 Coarsening dynamics through local moisture feedbacks -- 8.3.3 Cold pools -- 8.3.4 Surface heat fluxes -- 8.3.5 Effects of cold pools on organization -- 8.3.6 Interaction of cold pools and system scale circulations -- 8.3.7 Interactive surface temperatures -- 8.4 Temporally Varying surface conditions and the diurnal cycle -- 8.4.1 The quest for the origin of observed convective clustering -- Acknowledgments -- References -- Chapter 9 An Overview of Mesoscale Convective Systems: Global Climatology, Satellite Observations, and Modeling Strategies -- 9.1 An Overview of Mesoscale Convective Systems -- 9.2 Mesoscale Convective Systems in the Tropics -- 9.2.1 Interaction of MCSs with the El Niño Southern Oscillation -- 9.2.2 Interactions of MCSs with Monsoons -- 9.2.3 Interactions of MCSs with the Madden‐Julian Oscillation -- 9.3 Mesoscale Convective Systems Over the Midlatitudes -- 9.4 Satellite Observations of Mesoscale Convective Systems -- 9.4.1 Remote Sensing of Mesoscale Convective System‐Microphysical Interactions -- 9.4.2 Remote Sensing of the Mesoscale Convective System Life Cycle -- 9.4.3 Remote Sensing of Mesoscale Convective System‐Land Surface Interactions. |
9.5 Modeling of Mesoscale Convective Systems -- 9.5.1 Parameterization and Resolution Improvements -- 9.5.2 Model Physics Improvements -- 9.5.3 Convection‐Permitting Models for Climate Simulations -- 9.6 Summary -- References -- Part III Clouds and Circulation -- Chapter 10 Interactions Between the Tropical Atmospheric Overturning Circulation and Clouds in Present and Future Climates -- 10.1 Introduction -- 10.2 Future Changes to the Tropical Overturning Circulation -- 10.3 Future Changes to Clouds -- 10.4 Observational Evidence of Changes to Clouds and the Tropical Overturning Circulation -- 10.5 Toward an Improved Mechanistic Understanding of Cloud‐Circulation Interactions -- 10.6 Discussion -- Acknowledgments -- Availability Statement -- References -- Chapter 11 Clouds and Radiatively Induced Circulations -- 11.1 Introduction -- 11.2 Clouds and Tropospheric Diabatic Circulations -- 11.3 Low clouds and shallow circulations -- 11.3.1 Mechanism of Shallow Circulations -- 11.3.2 Shallow Circulations and Aggregation of Convection -- 11.3.3 Observed Shallow Circulations -- 11.4 Responses of tropical high clouds to the CRE‐AH -- 11.4.1 TTL Cirrus -- 11.4.2 Anvil Clouds -- References -- Chapter 12 The Small-Scale Mixing of Clouds With Their Environment: Impacts on Micro- and Macroscale Cloud Properties -- 12.1 Introduction -- 12.2 Entrainment and Mixing in Warm Clouds -- 12.3 The Theory of Small‐Scale Mixing -- 12.3.1 The Damköhler Number -- 12.3.2 The Mixing Diagram -- 12.4 Investigating Small‐ |
|
|
|
|
|
|
|
|
Scale Mixing -- 12.4.1 Observations -- 12.4.2 Numerical Modeling -- 12.5 Effects of Small‐Scale Mixing -- 12.5.1 Microscale Impacts -- 12.5.2 Macroscale Impacts -- 12.6 Conclusions -- Acknowledgments -- References -- Part IV Clouds and Precipitation -- Chapter 13 Precipitation Efficiency and Climate Sensitivity -- 13.1 Introduction. |
13.2 Defining Precipitation Efficiency. |
|
|
|
|
|
| |