1.

Record Nr.

UNINA9910830191703321

Autore

Suleimanov Baghir

Titolo

Nanocolloids for petroleum engineering : fundamentals and practices / / Baghir A. Suleimanov, Elchin F. Veliyev, and Vladimir Vishnyakov

Pubbl/distr/stampa

Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]

©2022

ISBN

1-119-88976-6

1-119-88960-X

Descrizione fisica

1 online resource (289 pages)

Disciplina

622/.33820284

Soggetti

Petroleum engineering - Materials

Colloids

Nnofluids

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- Introduction -- Part A Nanocolloids - An Overview -- Chapter 1 Nanocolloid Classification -- 1.1  What is a Colloid? -- 1.1.1  Colloid Classification -- 1.1.2  Colloid Evaluation -- 1.2  What is a Nanocolloid? -- Chapter 2 Nanocolloid Properties -- 2.1  Different Kinds of Interactions in Nanocolloids -- 2.1.1  Van der Waals Interactions -- 2.1.2  Electrostatic Interaction -- 2.1.3  Elastic-Steric Interaction -- 2.1.4  Hydrophobic Interaction -- 2.1.5  Solvation Interaction -- 2.1.6  Depletion Interaction -- 2.1.7  Magnetic Dipole-Dipole Interaction -- 2.1.8  Osmotic Repulsion -- 2.2  The Stability of Nanocolloids -- 2.3  Rheology of Nanocolloids -- 2.3.1  Effect of Nanoparticle Interaction on the Colloid Rheology -- 2.3.2  Effect of Nanoparticle Migration on the Colloid Rheology -- 2.4  Surface Tension Wettability -- 2.4.1  Wettability Alteration -- 2.4.2  Surface Tension -- Nomenclature -- References -- Part B Reservoir Development -- Chapter 3 Reservoir Conditions for Nanocolloid Formation -- 3.1  In-Situ Formation of Nanogas Emulsions -- 3.1.1  Stability of the Subcritical Gas Nuclei -- 3.2  In-Situ Formation of Nanoaerosoles -- 3.2.1  Stability of the Subcritical Liquid Nuclei -- Chapter 4 Nanogas



Emulsions in Oil Field Development -- 4.1  Hydrodynamics of Nanogas Emulsions -- 4.1.1  Flow Mechanism of Gasified Newtonian Liquids -- 4.1.2  Flow of Gasified Newtonian Liquids in Porous Media at Reservoir Conditions -- 4.2  Hydrodynamics of Nanogas Emulsions in Heavy Oil Reservoirs -- 4.2.1  Flow Mechanism of Gasified Non-Newtonian Liquids -- 4.2.2  Flow of Gasified Non-Newtonian Liquids in Porous Media at Reservoir Conditions -- 4.3  Field Validation of Slippage Phenomena -- 4.3.1  Steady-State Radial Flow -- 4.3.2  Unsteady State Flow.

4.3.3  Viscosity Anomaly Near to the Phase Transition Point -- Chapter 5 Nanoaerosoles in Gas Condensate Field Development -- 5.1  Study of the Gas Condensate Flow in a Porous Medium -- 5.2  Mechanism of the Gas Condensate Mixture Flow -- 5.2.1  Rheology Mechanism of the Gas Condensate Mixture During Steady-State Flow -- 5.2.2  Mechanism of Porous Medium Wettability Influence on the Steady-State Gas Condensate Flow -- 5.2.3  Mechanism of Pressure Build-Up at the Unsteady-State Flow of the Gas Condensate -- 5.2.4  Concluding Remarks -- Nomenclature -- References -- Part C Production Operations -- Chapter 6 An Overview of Nanocolloid Applications in Production Operations -- Chapter 7 Nanosol for Well Completion -- 7.1  The Influence of the Specific Surface Area and Distribution of Particles on the Cement Stone Strength -- 7.2  The Influence of Nano-SiO2 and Nano-TiO2 on the Cement Stone Strength -- 7.3  Regression Equation -- 7.4  Concluding Remarks -- Chapter 8 Nanogas Emulsion for Sand Control -- 8.1  Fluidization by Gasified Fluids -- 8.1.1  Carbon Dioxide Gasified Water as Fluidizing Agent -- 8.1.2  Natural Gas or Air Gasified Water as Fluidizing Agent -- 8.2  Chemical Additives Impact on the Fluidization Process -- 8.2.1  Water-Air Mixtures with Surfactant Additives as Fluidizing Agent -- 8.2.2  Fluidization by Polymer Compositions -- 8.3  Mechanism of Observed Phenomena -- Chapter 9 Vibrowave Stimulation Impact on Nanogas Emulsion Flow -- 9.1  Exact Solution -- 9.2  Approximate Solution -- 9.3  Concluding Remarks -- Nomenclature -- References -- Part D Enhanced Oil Recovery -- Chapter 10 An Overview of Nanocolloid Applications for EOR -- 10.1  Core Flooding Experiments Focused on Dispersion Phase Properties -- 10.2  Core Flooding Experiments Focused on Dispersion Medium Properties -- Chapter 11 Surfactant-Based Nanofluid.

11.1  Nanoparticle Influence on Surface Tension in a Surfactant Solution -- 11.2  Nanoparticle Influence on the Surfactant Adsorption Process -- 11.3  Nanoparticle Influence on Oil Wettability -- 11.4  Nanoparticle Influence on Optical Spectroscopy Results -- 11.5  Nanoparticle Influence on the Rheological Properties of Nanosuspension -- 11.6  Nanoparticle Influence on the Processes of Newtonian Oil Displacement in Homogeneous and Heterogeneous Porous Mediums -- 11.7  Concluding Remarks -- Chapter 12 Nanofluids for Deep Fluid Diversion -- 12.1  Pre-formed Particle Nanogels -- 12.1.1  Nanogel Strength Evaluation -- 12.1.2  Kinetic Mechanism of Gelation -- 12.1.3  Core Flooding Experiments -- 12.1.4  Concluding Remarks -- 12.2  Colloidal Dispersion Nanogels -- 12.2.1  Rheology -- 12.2.2  Aging Effect -- 12.2.3  Interfacial Tension -- 12.2.4  Zeta Potential -- 12.2.5  Particle Size Distribution -- 12.2.6  Resistance Factor/Residual Resistance Factor -- 12.2.7  Concluding Remarks -- Chapter 13 Nanogas Emulsions as a Displacement Agent -- 13.1  Oil Displacement by a Newtonian Gasified Fluid -- 13.2  Oil Displacement by a Non-Newtonian Gasified Fluid -- 13.3  Mechanism of Observed Phenomena -- 13.4  Field Application -- Nomenclature -- References -- Part E Novel Perspective Nanocolloids -- Chapter 14 Metal String Complex



Micro and Nano Fluids -- 14.1  What are Metal String Complexes? -- 14.2  Thermal Conductivity Enhancement of Microfluids with Ni3(µ3-ppza)4Cl2 Metal String Complex Particles -- 14.2.1  Microparticles of MSC Ni3(µ3-ppza)4Cl2 -- 14.2.2  Ni3 Microfluid -- 14.2.3  Fluid Stability -- 14.2.4  Thermal Conductivity -- 14.2.5  Rheology -- 14.2.6  Surface Tension -- 14.2.7  Freezing Points -- 14.2.8  Concluding Remarks -- 14.3  Thermophysical Properties of Nano- and Microfluids with Ni5(µ5-pppmda)4Cl2 Metal String Complex Particles.

14.3.1  Microparticles of the Metal String Complex Ni5(µ5-pppmda)4Cl2 -- 14.3.2  Micro- and Nanofluid Preparations -- 14.3.3  Fluid Stability -- 14.3.4  Thermal Conductivity -- 14.3.5  Rheology -- 14.3.6  Surface Tension -- 14.3.7  Freezing Points -- 14.3.8  Concluding Remarks -- Nomenclature -- References -- Appendix A Determination of Dispersed-Phase Particle Interaction Influence on the Rheological Behavior -- Appendix B Determination of Inflection Points -- References -- Index -- EULA.