|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910830038303321 |
|
|
Titolo |
Schiff base metal complexes : synthesis and applications / / edited by Pranjit Barman and Anmol Singh |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83947-X |
3-527-83945-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (224 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Historical Background -- 1.1 Introduction -- 1.2 Theories of Coordinate Bond -- 1.2.1 Valence Bond Theory -- 1.2.2 Crystal Field Theory -- 1.2.3 Molecular Orbital Theory -- 1.2.4 Ligand Field Theory -- References -- Chapter 2 Classification -- 2.1 Ligands -- 2.2 Schiff Base -- 2.3 Types of Schiff Base -- 2.3.1 Salen‐type Ligands -- 2.3.2 Salophen‐type Ligands -- 2.3.3 Hydrazone‐type Ligands -- 2.3.4 Thiosemicarbazone/Carbazone‐type Ligands -- 2.3.5 Heterocyclic Schiff Bases -- 2.4 Different Bonding Modes of Schiff Bases -- 2.4.1 Monodentate -- 2.4.2 Bidentate -- 2.4.3 Tridentate -- 2.4.4 Tetradentate -- 2.4.5 Pentadentate -- 2.4.6 Hexadentate -- References -- Chapter 3 Different Routes of Synthesis -- 3.1 Formation of Schiff Bases -- 3.1.1 Direct Ligand Synthesis -- 3.1.2 Template Synthesis -- 3.1.3 Rearrangement of Heterocycles (Oxazoles, Thiazoles, etc.) -- References -- Chapter 4 Schiff Base Metal Complexes -- References -- Chapter 5 Effect of Different Parameters on Schiff Base and their Metal Complex -- 5.1 Ionic Charge -- 5.2 Ionic Size -- 5.3 Nature of Central Metal Ions -- 5.4 Nature of the Ligand -- 5.4.1 Basic Character of the Ligand -- 5.4.2 Size and Charge of the Ligand -- 5.4.3 Concentration of Ligand -- 5.4.4 Substitution Effect -- 5.4.5 Chelating Effect -- 5.4.6 Nature of Solvent -- 5.4.7 Crystal Field Effect -- 5.4.8 Thermodynamic and Kinetic Effect -- References -- |
|
|
|
|
|
|
|
|
|
Chapter 6 Thioether and Chiral Schiff Base -- 6.1 Thioether Schiff Base -- 6.2 Chiral Schiff Base -- References -- Part II Synthesis -- Chapter 7 General Routes of Synthesis -- 7.1 Introduction -- 7.2 Mechanism of the Synthesis of Schiff Base Ligand -- 7.3 Problems Found in Conventional Method - Hydrolysis of C N Bond -- References. |
Chapter 8 Different Route of Synthesis of Schiff Base‐Metal Complexes -- 8.1 Introduction -- 8.2 Different Chemical Routes -- 8.2.1 Preparation of Schiff's Bases via Aerobic Oxidative Synthesis -- 8.2.2 Synthesis of Schiff Bases via Addition of Organometallic Reagents to Cyanides -- 8.2.3 Reaction of Phenol with Nitriles to Form SB -- 8.2.4 Reaction of Metal Amides to Ketone to Form SB -- 8.2.5 Reaction of Nitroso Compounds with Active Hydrogen Compounds -- 8.2.6 Dehydrogenation of Amines -- 8.2.7 Oxidation of Metal Amines to Form SB -- 8.2.8 Reduction of Carbon-Nitrogen Compounds -- 8.2.9 Synthesis of SB from Ketals -- 8.2.10 SB Synthesis by Using Hydrazoic Acid -- 8.2.11 SB Synthesis by Using Sodium Hypochlorite -- 8.2.12 Preparation of N‐metallo Imines -- 8.2.13 Preparation of N‐metallo Imines (Metal & -- equals -- B, Al, Si, Sn) -- 8.2.13.1 Preparation of N‐boryl and N‐aluminum Imines -- 8.2.13.2 Preparation of N‐silylimines via -- 8.2.13.3 Preparation of N‐tin Imines -- 8.3 Different Methods -- 8.3.1 Classical or Conventional Method -- 8.3.2 Microwave Irradiation Method -- 8.3.3 Water as Solvent Method -- 8.3.4 Grindstone Technique -- 8.3.5 Ultrasonic Method -- 8.3.6 Green Method Using Green Catalyst -- References -- Chapter 9 Synthesis and Mechanism of Schiff Base‐Metal Complexes -- 9.1 Introduction -- 9.2 Synthesis of Schiff Bases Metal Complexes -- 9.2.1 Synthesis of Ligand Followed by Complexation -- 9.2.2 One‐Step Process or Template Synthesis -- 9.3 Synthesis of Some of the Schiff Base Metal Complexes -- References -- Chapter 10 Synthesis and Mechanism of Chiral and Achiral Schiff Base and Their Metal Complexes -- 10.1 Introduction -- 10.2 Synthesis of Chiral and Achiral SB Ligand -- 10.3 Synthesis of Chiral SB Metal Complexes -- 10.4 Chiral Schiff Bases of Titanium, Zirconium, and Vanadium. |
10.5 Chiral Schiff Bases of Main Group Metals -- 10.5.1 Manganese and Chromium Schiff Bases -- 10.5.2 Iron and Ruthenium Schiff Base Complexes -- 10.5.3 Cobalt, Nickel, Copper, and Zinc Schiff Base Complexes -- 10.5.4 Lanthanide Metal Schiff Bases -- 10.5.5 Silicon and Tin Metal Schiff Bases -- References -- Chapter 11 Synthesis and Mechanism of Thioether: Schiff Base and Their Metal Complexes -- 11.1 Introduction -- 11.2 Chemical Synthesis Procedures -- 11.2.1 Procedure for the Synthesis of Thioether‐Containing Schiff Base -- References -- Chapter 12 Computational Chemistry -- 12.1 Introduction -- 12.2 Application of DFT in the Field of Schiff Base and Their Metal Complexes -- References -- Part III Application -- Chapter 13 General Applications of Schiff Bases and Their Metal Complexes -- 13.1 Catalyst -- 13.2 Biological and Medicinal Importance -- 13.2.1 Antibacterial Activity -- 13.2.2 Anticancer and Anti‐inflammatory Agent -- 13.2.3 Antifungal Activity -- 13.2.4 As a Drug in a Number of Diseases -- 13.3 Coatings -- 13.4 Analytical Chemistry -- 13.5 Dyes -- 13.6 Semi‐conducting Materials -- 13.7 Solar System -- 13.8 Photocatalyst -- 13.9 Polymer Chemistry -- 13.10 Agrochemical Industry -- References -- Chapter 14 Application in Pharmacological Field -- 14.1 Introduction -- 14.2 Antimicrobial Activity -- 14.2.1 Schiff Bases Against Gram‐Positive Bacteria -- 14.2.2 Schiff Bases Against Gram‐Negative Bacteria -- 14.3 Antifungal Activity of Schiff Bases -- 14.4 Anticancer Activity of Schiff Bases and Their Metal Complexes -- 14.4.1 In Vitro Activity -- 14.4.2 In Vivo Activity -- 14.5 Antidyslipidemic and Antioxidant Activity -- 14.6 Anthelmintic Activity |
|
|
|
|
|
|
|
|
-- 14.7 Antitubercular Activity -- 14.8 Antidepressant Activity -- 14.9 Anticonvulsant Activity -- 14.10 Antioxidant Activity -- 14.11 Antiviral Activity. |
14.12 Anti‐inflammatory and Analgesic Activities -- References -- Chapter 15 Application as Catalyst -- 15.1 Introduction -- 15.2 Coupling Reaction -- 15.3 Polymerization Reaction -- 15.4 Oxidation Reaction -- 15.5 Epoxidation Reaction -- 15.6 Ring‐Opening Epoxidation Reaction -- 15.7 Cyclopropanation Reaction -- 15.8 Hydrosilylation Reaction -- 15.9 Hydrogenation Reaction -- 15.10 Aldol Reaction -- 15.11 Michael Addition Reaction -- 15.12 Annulation Reaction -- 15.13 Diels-Alder Reaction -- 15.14 Click Reaction -- 15.15 Mannich Reaction -- 15.16 Ene Reaction -- 15.17 Summary -- References -- Chapter 16 Application as Drug‐Delivery System -- References -- Chapter 17 Chemosensors/Bioimaging Applications -- 17.1 Introduction -- 17.1.1 Chemosensing -- 17.1.1.1 Explosives Sensing -- 17.1.1.2 Oxygen Sensing -- 17.1.1.3 High pH Sensing -- 17.1.1.4 Other Porphyrinoid‐based Chemosensors and Chemodosimeters -- 17.1.1.5 Metal Sensing -- 17.2 Chemosensors -- 17.2.1 Fluorescence ON‐OFF -- 17.2.1.1 Tiny Molecules Chemosensors -- 17.2.1.2 Supramolecular Chemosensors -- 17.2.1.3 QDs‐based Chemosensors -- 17.2.1.4 Fluorescent Nanomaterial‐based Chemosensors -- 17.2.2 OFF‐ON Chemosensors -- 17.2.2.1 Rhodamine‐based Sensors -- 17.2.2.2 Coumarin‐based Sensors -- 17.2.2.3 BODIPY‐based Sensors -- 17.2.3 Ratiometric Fluorescent Chemosensors -- 17.2.3.1 Pyrene‐based Chemosensors -- 17.2.3.2 Fluorophore Hybridization Chemosensors -- 17.2.3.3 Dual‐emission Fluorescent Nanoparticles -- 17.2.4 Rhodamine‐based Sensors -- 17.2.4.1 Fluorescent Bioimaging of CK in HeLa cells -- 17.2.4.2 Mice Bioimaging Experiments -- 17.2.5 Fluorescent Chemosensor for AcO− Detection -- 17.2.6 CN− and Al3+ Chemosensor for Bioimaging -- 17.3 Conclusion -- References -- Chapter 18 Application in Industrial Field -- 18.1 Introduction -- 18.2 Current Status in India -- 18.3 Conclusion -- References. |
Index -- EULA. |
|
|
|
|
|
| |