1.

Record Nr.

UNINA9910450186403321

Autore

Neuhoff John

Titolo

Ecological Psychoacoustics / / John Neuhoff

Pubbl/distr/stampa

Leiden; ; Boston : , : BRILL, , 2004

ISBN

9786611008291

0-08-047744-5

1-281-00829-X

Descrizione fisica

1 online resource (368 p. ) : Illustrated

Disciplina

152.1/5

Soggetti

Perception auditive

Auditory perception

Environmental psychology

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction and History -- Auditory Perceptual Organization Inside and Outside the Laboratory -- Attention and Timing -- Auditory Motion and Localization -- From Gibson's Fire to Gestalts: A Bridge-building Theory of Perceptual Objecthood -- Ecological Psychoacoustics and Auditory Displays: Hearing, Grouping, and Meaning Making -- Environmental Acoustics: Psychological Assessment of Noise -- Ecological Development Psychoacoustics -- Perceiving Articulatory Events: Lessons for an Ecological Psychoacoustics -- Interacting Perceptual Dimensions -- Pitch and Pitch Structures -- Loudness.

Sommario/riassunto

Ecological Psychoacoustics outlines recent advances in dynamic, cognitive, and ecological investigations of auditory perception and ties this work to findings in more traditional areas of psychoacoustics. The book illuminates some of the converging evidence that is beginning to emerge from these traditionally divergent fields, providing a scientifically rigorous, "real world" perspective on auditory perception, cognition, and action. In a natural listening environment almost all sounds are dynamic, complex, and heard concurrently with other sounds. Yet, historically, traditional psychoacoustics has examined the



perception of static, impoverished stimuli presented in isolation. "Ecological Psychoacoustics" examines recent work that challenges some of the traditional ideas about auditory perception that were established with these impoverished stimuli and provides a focused look at the perceptual processes that are more likely to occur in natural settings. It examines basic psychoacoustics from a more cognitive and ecological perspective. It provides broad coverage including both basic and applied research in auditory perception; and coherence and cross referencing among chapters.

2.

Record Nr.

UNINA9910782994603321

Autore

Davies Brian <1951->

Titolo

The reality of God and the problem of evil [[electronic resource] /] / Brian Davies

Pubbl/distr/stampa

London ; ; New York, : Continuum, 2006

ISBN

1-282-01414-5

9786612014147

1-4411-3870-6

Descrizione fisica

1 online resource (271 p.)

Disciplina

231.8

Soggetti

Theodicy

Good and evil

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 256-260) and index.

Nota di contenuto

The problem of evil -- God the creator -- Identifying God -- God's moral standing -- How not to exonerate God : I -- How not to exonerate God : II -- Evil, causation and God -- Goodness, love and reasons -- God, evil and goodness -- Appendix: Is God morally indifferent?

Sommario/riassunto

An important new book on how we can still believe in a God of love and confront the problem of evil in the world. Probably the most important book on the subject since John Hick's book `Evil and the God of Love`. &; Evil is a strong word that people now employ fairly rarely. Many



people believe these days that God is omnipotent,omniscient and good and that what we deem to be bad or evil in the world is no reason for abandoning belief in God. It is an intellectual or theoretical problem not one where the focus is on how one might bring about some desirable goal ( a practical matter). &; Profess

3.

Record Nr.

UNINA9910829903303321

Autore

Srivastava Jay Prakash

Titolo

Mechanical Engineering in Biomedical Application : Bio-3D Printing, Biofluid Mechanics, Implant Design, Biomaterials, Computational Biomechanics, Tissue Mechanics

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-394-17510-8

1-394-17509-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (438 pages)

Altri autori (Persone)

RanjanVinayak

KozakDrazan

KumarRanjan

KumarPankaj

TayalShubham

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Part I: Additive Manufacturing -- Chapter 1 The Role of Additive Manufacturing Technologies for Rehabilitation in Healthcare and Medical Applications -- 1.1 Introduction -- 1.2 Classification of the Additive Manufacturing Process -- 1.2.1 Jetting-Based Bioprinting -- 1.2.2 Extrusion-Based Bioprinting -- 1.2.3 Laser-Assisted Bioprinting -- 1.2.4 Laser-Based Stereolithography -- 1.3 AM Materials for Medical Applications -- 1.4 Biomedical and Healthcare Applications of AM -- 1.5 Conclusion and Future Outlook --



References -- Chapter 2 Artificial Recreation of Human Organs by Additive Manufacturing -- 2.1 Introduction -- 2.2 Role of Additive Manufacturing for Human Organs -- 2.3 Role of Artificial Recreation -- 2.3.1 Decellularized Organ Regeneration -- 2.3.2 3D Bioprinting of Organs and Cells -- 2.3.3 Self-Healing and Shape Memory for Artificial Organs -- 2.4 Role of Additive Manufacturing in Orthopedics -- 2.5 Types of Bioadditive Manufacturing -- 2.5.1 Classification of Organoids Using AM -- 2.6 Conclusion -- References -- Chapter 3 Advances, Risks, and Challenges of 3D Bioprinting -- 3.1 Introduction -- 3.2 3D Bioprinting -- 3.2.1 Types of 3D Bioprinting -- 3.3 Biomaterials and Bioinks -- 3.4 Applications of 3D Bioprinting -- 3.5 A Case Study -- 3.6 Conclusions -- References -- Chapter 4 Laser-Induced Forward Transfer for Biosensor Application -- 4.1 Introduction -- 4.2 Biosensor -- 4.2.1 History/Background -- 4.2.2 Types of Biosensors -- 4.2.2.1 Potentiometric Biosensors -- 4.2.2.2 Amperometric Biosensors -- 4.2.2.3 Impedimetric Biosensors -- 4.2.2.4 Conductometric Biosensors -- 4.2.3 Biosensor Manufacturing Processes -- 4.3 Laser-Induced Forward Transfer (LIFT) -- 4.3.1 History and Process Description -- 4.3.2 Process Parameters -- 4.3.2.1 Fluence of Lasers.

4.3.2.2 Film-Acceptor Substrate Distance -- 4.3.2.3 Material Selection -- 4.3.2.4 Pulse Characteristics of Lasers -- 4.3.2.5 Laser Spot Size -- 4.4 Laser-Induced Forward Transfer for Biosensor Manufacturing -- 4.5 Outlook and Conclusion -- References -- Part II: Biomaterials -- Chapter 5 The Effect of the Nanostructured Surface Modification on the Morphology and Biocompatibility of Ultrafine-Grained Titanium Alloy for Medical Application -- 5.1 Introduction -- 5.1.1 Titanium-Based Materials for Biomedical Application -- 5.1.2 Ultrafine-Grained Titanium-Based Materials Obtained by Severe Plastic Deformation (SPD) -- 5.1.3 Electrochemical Anodization of Titanium-Based Materials -- 5.2 Materials and Methods -- 5.2.1 High-Pressure Torsion Process -- 5.2.2 Electrochemical Anodization -- 5.2.3 Characterization of the Surface Topography by Atomic Force Microscopy (AFM) -- 5.2.4 Biocompatibility Examination -- 5.3 Results and Discussion -- 5.3.1 The Microstructure of the Ultrafine-Grained Two-Phase Ti-13Nb-13Zr Alloy -- 5.3.2 Morphology of Nanostructured Surfaces of the Materials -- 5.3.3 Characterization of the Surface Topography -- 5.3.4 Biocompatibility Examination -- Conclusions -- Acknowledgments -- References -- Chapter 6 Powder Metallurgy-Prepared Ti-Based Biomaterials with Enhanced Biocompatibility -- 6.1 Introduction -- 6.2 Powder Metallurgy of Ti-Based Materials -- 6.2.1 Powder Metallurgy of Ti and Ti Alloys -- 6.2.2 Powder Metallurgy of Ti-Based Composites -- 6.2.2.1 Porosity of PM Ti-Based Materials -- 6.2.2.2 Effect of Reinforcing Particles on the Biological Behavior of Ti-Based Composites -- 6.3 Laser Surface Treatment of Materials for Enhanced Human Cell Osteodifferentiation -- 6.3.1 Laser-Treated Surfaces of PM Ti-Based Materials -- Conclusion -- Acknowledgments -- References.

Chapter 7 Total Hip Replacement Response to a Variation of the Radial Clearance Through In Silico Models -- 7.1 Introduction -- 7.2 The Musculoskeletal Multibody Model -- 7.2.1 Kinematical Analysis -- 7.2.2 Dynamical Analysis -- 7.2.3 The Muscle Actuator -- 7.2.4 The Geodesic Muscle Wrapping -- 7.2.5 The Hill Muscle-Tendon Model -- 7.2.6 The Static Optimization -- 7.3 The Lubrication/Contact Model -- 7.3.1 The Hip Joint -- 7.3.2 The Reynolds Equation -- 7.3.3 Numerical Resolution -- 7.3.4 Coupling Models -- 7.4 Simulations -- 7.4.1 Gait Cycle Results -- 7.4.2 Tribological Results -- 7.4.3 Radial Clearance Sensitivity Analysis -- 7.5 Conclusions -- References -- Chapter 8 Techniques of Biopolymer and Bioceramic Coatings on Prosthetic Implants -- 8.1 Introduction -- 8.2 Driving Factors for the Application



of Coatings -- 8.2.1 Corrosion of Metal Implants and Its Categories -- 8.2.1.1 Uniform Attack -- 8.2.1.2 Fretting Corrosion -- 8.2.1.3 Galvanic Corrosion -- 8.2.1.4 Pitting Corrosion -- 8.2.1.5 Crevice Corrosion -- 8.2.1.6 Leaching -- 8.2.1.7 Stress Corrosion Cracking (SCC) -- 8.2.2 Bioactivity of the Surface -- 8.2.2.1 Immune Rejection, Osteoinduction, Osteoconduction, and Osseointegration -- 8.2.2.2 Toxicity and Bacterial Biofilm Formation -- 8.3 The Development of Implant Coatings -- 8.3.1 Strategies for Coating the Implants -- 8.4 Conclusions -- References -- Chapter 9 Mechanical Behavior of Bioglass Materials for Bone Implantation -- 9.1 Introduction on Bio Materials -- 9.2 Aim and Objective of the Work -- 9.3 Role of REEs (CeO2, La2O3, and Sm2O3) -- 9.4 Uses of Rare Earth Elements -- 9.5 Biomaterials -- 9.6 Simulated Body Fluid -- 9.7 Bioactive Glasses -- 9.8 Bioactive Composites -- 9.9 Area of Biomaterials -- References -- Chapter 10 Biomedical Applications of Composite Materials -- 10.1 Introduction.

10.2 Different Types of Composites Used in Biomedical Applications -- 10.3 Application of Composites in Tissues -- 10.4 Application of Composites in Dentistry -- 10.5 Application of Composites in Total Joint Replacements -- 10.6 Application of Composites in Hip Joint Replacement -- Conclusions -- References -- Part III: Biofluid Mechanics -- Chapter 11 Materials Advancement, Biomaterials, and Biosensors -- 11.1 Introduction -- 11.2 Design of Biomaterials -- 11.3 Polymers -- 11.4 Metals as Biomaterials -- 11.5 Bioactive Material and Concept of Bioactivity -- 11.6 Biocompatibility of the Titanium Binder Element -- 11.7 Classification -- 11.8 Interaction Between Biomaterials and Biological Systems -- 11.9 Biomaterials: Protein Surface Interactions -- 11.10 Dental Material Cavity Fillers -- 11.11 Bridges, Crowns, and Dentures -- 11.12 Bone Fractures -- 11.13 Biosensors -- 11.14 Biosensor Classification -- 11.14.1 Resonant Biosensor -- 11.14.2 Optical Biosensors -- 11.14.3 Surface Plasmon Resonance (SPR) Biosensor -- 11.14.4 Piezoelectric Biosensors -- 11.14.5 Thermal Biosensors -- 11.14.6 Electrochemical Biosensors -- 11.14.7 Bioluminescence Sensors -- 11.14.8 Nucleic Acid-Based Biosensors -- 11.14.9 Nanobiosensors -- 11.14.10 Microbial Biosensors -- 11.14.11 Bioreceptor-Based Category -- 11.14.12 Transducer-Based Category -- 11.15 Biosensors: Precursors of Contemporary Biomaterial Succession -- 11.15.1 Carbon-Based Nanomaterials -- 11.15.2 Carbon Nanotubes -- 11.15.3 Electrochemical Biosensors Based on Carbon Nanotubes -- 11.15.4 Carbon Nanotube-Based Immunosensors -- 11.15.5 Optical Sensors Composed of Carbon Nanotubes -- 11.15.6 Graphene-Based Biosensors -- 11.15.7 Electrochemical Biosensors Based on Graphene -- 11.15.8 Graphene-Based Immunosensors -- 11.15.9 Graphene-Modulated Gene Biosensors -- 11.15.10 Conductive Polymers -- 11.15.11 Polypyrrole.

11.15.12 Polythiophene -- 11.15.13 Polyaniline and Its Byproducts -- 11.15.14 Polyacetylene -- References -- Chapter 12 Blockage Study in Carotid Arteries -- 12.1 Introduction -- 12.2 Numerical Model and Its Implementation -- 12.2.1 Geometry -- 12.2.2 Meshing and GIT -- 12.2.3 Governing Equations -- 12.2.4 Boundary Conditions -- 12.3 Results and Discussion -- 12.3.1 Effect of Blockage on Blood Flow Velocity -- 12.3.2 Effect of Blood Flow Velocities on Wall Stress -- 12.3.3 Effect of Stenosis on Dynamic Pressure Distribution -- 12.3.4 Effect of Stenosis on Viscosity and Mass Imbalance -- 12.4 Conclusion -- References -- Chapter 13 Mechanical Properties of Human Synovial Fluid: An Approach for Osteoarthritis Treatment -- 13.1 Introduction -- 13.1.1 Synovial Fluid -- 13.1.2 Structure and Composition of Synovial Fluid -- 13.2 Osteoarthritis and Its Treatments -- 13.3



Viscosupplements -- 13.3.1 Hylan G-F 20 -- 13.3.2 Sodium Hyaluronate -- 13.3.3 Hyaluronan -- 13.4 Synovial Mimic Fluid/PVP -- 13.5 Conclusion -- References -- Chapter 14 Artificial Human Heart Biofluid Simulation as a Boon to Humankind: A Review Study -- 14.1 Introduction -- 14.2 Biofluid Simulation -- 14.3 Heart Valve Fluid Flow -- 14.4 Artificial Heart as a Boon to Humankind -- 14.5 Conclusion -- References -- Part IV: Robotics -- Chapter 15 Robotics in Medical Science -- 15.1 Introduction -- 15.2 Minimally Invasive Surgery (MIS) -- 15.3 Human-Robot Interaction -- 15.4 Robotic Manipulation -- 15.5 The Role of Human-Computer Interaction (HCI) -- 15.6 Soft Robotics in Medicine -- 15.7 Haptics in Medicine -- 15.8 Automation and Control -- 15.9 Dental -- 15.10 CAD/CAM -- 15.11 Conclusion -- References -- Chapter 16 A Research Perspective on Ankle-Foot Prosthetics Designs for Transtibial Amputees -- 16.1 Introduction -- 16.2 Biomechanics of Biological Ankle and Foot -- 16.3 Prosthetic Foot.

16.3.1 Design of Passive Prosthetic Ankle-Foot.