|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910829902403321 |
|
|
Autore |
Ansorge R (Rainer), <1931-> |
|
|
Titolo |
Mathematical models of fluiddynamics [[electronic resource] ] : modelling, theory, basic numerical facts : an introduction / / Rainer Ansorge |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, : Wiley-VCH, c2003 |
|
|
|
|
|
|
|
ISBN |
|
1-280-52103-1 |
9786610521036 |
3-527-60639-4 |
3-527-60277-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (189 p.) |
|
|
|
|
|
|
Disciplina |
|
532.05 |
532.05015118 |
532.5015118 |
532/.05/015118 |
|
|
|
|
|
|
|
|
Soggetti |
|
Fluid dynamics - Mathematical models |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [181]-182) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
3.3 Uniqueness of Entropy Solutions3.4 The Ansatz due to Kruzkov; 4 The Riemann Problem; 4.1 Numerical Importance of the Riemann Problem; 4.2 The Riemann Problem in the Case of Linear Systems; 5 Real Fluids; 5.1 The Navier-Stokes Equations Model; 5.2 Drag Force and the Hagen-Poiseuille Law; 5.3 Stokes Approximation and Artificial Time; 5.4 Foundations of the Boundary Layer Theory; Flow Separation; 5.5 Stability of Laminar Flows; 6 Existence Proof for Entropy Solutions by Means of Discretization Procedures; 6.1 Some Historical Remarks; 6.2 Reduction to Properties of Operator Sequences |
6.3 Convergence Theorems6.4 Example; 7 Types of Discretization Principles; 7.1 Some General Remarks; 7.2 The Finite Difference Calculus; 7.3 The CFL Condition; 7.4 Lax-Richtmyer Theory; 7.5 The von Neumann Stability Criterion; 7.6 The Modified Equation; 7.7 Difference Schemes in Conservation Form; 7.8 The Finite Volume Method on Unstructured Grids; Some Extensive Monographs; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This introduction to the field contains a careful selection of topics and |
|
|
|
|