1.

Record Nr.

UNINA9910828944503321

Autore

Moritz Frederick G. F

Titolo

Electromechanical motion systems : design and simulation / / Frederick G.F. Moritz

Pubbl/distr/stampa

Chichester, England : , : Wiley, , 2014

©2014

ISBN

1-118-35979-8

1-118-35978-X

1-118-35967-4

Descrizione fisica

1 online resource (310 p.)

Classificazione

TEC046000

Disciplina

629.8/323

Soggetti

Servomechanisms

Robotics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Electromechanical Motion Systems; Contents; Acknowledgements; 1 Introduction; 1.1 Targeted Readership; 1.2 Motion System History; 1.3 Suggested Library for Motion System Design; Reference; 2 Control Theory Overview; 2.1 Classic Differential/Integral Equation Approach; 2.2 LaPlace Transform-the S Domain; 2.3 The Transfer Function; 2.4 Open versus Closed Loop Control; 2.4.1 Transient and Frequency Response; 2.5 Stability; 2.6 Basic Mechanical and Electrical Systems; 2.6.1 Equations and Constants; 2.6.2 Power Test; 2.6.3 Retardation Test; 2.7 Sampled Data Systems/Digital Control; 2.7.1 Sampling

2.7.2 Quantization 2.7.3 Computational Delay; 2.7.4 System Analysis; References; 3 System Components; 3.1 Motors and Amplifiers; 3.1.1 Review of Motor Theory; 3.1.2 The Brush Motor; 3.1.3 The "H" Drive PWM Amplifier; 3.1.4 The Brushless Motor [2, 3]; 3.1.5 Speed/Torque Curves; 3.1.6 Thermal Effects; 3.1.7 Motor Constant; 3.1.8 Linear Motor [7-10]; 3.1.9 Stepper Motors [12]; 3.1.10 Induction Motors; 3.2 Gearheads; 3.2.1 Spur Gearhead; 3.2.2 Planetary Gearhead; 3.2.3 Hybrid Gearhead; 3.2.4 Worm Gearhead; 3.2.5 Harmonic Gearhead; 3.2.6 Gearhead Sizing - Continuous Operation



3.2.7 Gearhead Sizing - Intermittent Operation 3.2.8 Axial and Radial Load; 3.2.9 Backlash and Stiffness; 3.2.10 Temperature/Thermal Resistance; 3.2.11 Planetary/Spur Gearhead Comparison; 3.3 Leadscrews and Ballscrews; 3.3.1 Leadscrew Specifications; 3.3.2 Ball Screw Specifications; 3.3.3 Critical Speed; 3.3.4 Column Strength; 3.3.5 Starts, Pitch, Lead; 3.3.6 Encoder Lead; 3.3.7 Accuracy; 3.3.8 Backdrive - Self-Locking; 3.3.9 Assemblies; 3.4 Belt and Pulley; 3.4.1 Belt; 3.4.2 Guidance/Alignment; 3.4.3 Belt and Pulley versus Ball Screw; 3.5 Rack and Pinion; 3.5.1 Design Highlights

3.5.2 Backlash 3.5.3 Dynamics; 3.6 Clutches and Brakes; 3.6.1 Clutch/Brake Types; 3.6.2 Velocity Rating; 3.6.3 Torque Rating; 3.6.4 Duty Cycle/Temperature Limits; 3.6.5 Timing; 3.6.6 Control; 3.6.7 Brake/System Timing; 3.6.8 Soft Start/Stop; 3.7 Servo Couplings; 3.7.1 Inertia; 3.7.2 Velocity; 3.7.3 Torque; 3.7.4 Compliance; 3.7.5 Misalignment; 3.7.6 Coupling Types; 3.8 Feedback Devices; 3.8.1 Optical Encoders; 3.8.2 Magnetic Encoders; 3.8.3 Capacitive Encoders; 3.8.4 Magnetostrictive/Acoustic Encoders; 3.8.5 Resolvers; 3.8.6 Inductosyn; 3.8.7 Potentiometer; 3.8.8 Tachometers; References

Additional Readings 4 System Design; 4.1 Position, Velocity, Acceleration, Jerk, Resolution, Accuracy, Repeatability; 4.1.1 Position; 4.1.2 Velocity; 4.1.3 Acceleration; 4.1.4 Jerk; 4.2 Three Basic Loops - Current/Voltage, Velocity, Position; 4.2.1 Current Voltage Loop; 4.2.2 Velocity Loop; 4.2.3 Position Loop; 4.3 The Velocity Profile; 4.3.1 Preface; 4.3.2 Incremental Motion; 4.3.3 Constant Motion; 4.3.4 Profile Simulation; 4.4 Feed Forward; 4.5 Inertia; 4.5.1 Preface; 4.5.2 Motor Selection; 4.5.3 Reflected Inertia - Gearhead; 4.5.4 Torque versus Optimum Ratio - Gearhead

4.5.5 Power versus Optimum Ratio - Gearhead

Sommario/riassunto

An introductory reference covering the devices, simulations and limitations in the control of servo systems  Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency