1.

Record Nr.

UNINA9910828520003321

Titolo

Corynebacterium glutamicum : from systems biology to biotechnological applications / / edited by Andreas Burkovski

Pubbl/distr/stampa

Norfolk, England : , : Caister Academic Press, , [2015]

©2015

ISBN

1-910190-06-3

Descrizione fisica

1 online resource (210 p.)

Disciplina

579.373

Soggetti

Corynebacterium glutamicum - Metabolism

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Contents; Contributors; Current Books of Interest; Preface; 1: Trends in Corynebacterium glutamicum Research and Application; From glutamate producer to a biotechnology workhorse; Systems biology; Corynebacterium glutamicum as a synthetic biology platform; Corynebacterium glutamicum-based green technology; 2: Proteomics of Corynebacterium glutamicum; Introduction; Understanding Corynebacterium glutamicum physiology with proteomics: application examples; Methods of Corynebacterium glutamicum proteomics; Conclusion and outlook

3: Developing Interpretation of Intracellular Metabolism of Corynebacterium glutamicum by Using Flux Analysis TechnologyIntroduction; Understanding the physiology of Corynebacterium glutamicum lysine production and glutamate production through conventional metabolic flux analysis; Fractional 13C enrichment-based metabolic flux analysis; Improvement in metabolic flux analysis precision; Conclusion; 4: Growth and Production Capabilities of Corynebacterium glutamicum: Interrogating a Genome-scale Metabolic Network Model; Introduction; The metabolic network of Corynebacterium glutamicum

Stoichiometric modelling fundamentalsModel validation; Predicting production capabilities for amino acids; Uncertainties in metabolic network models; Metabolic flux analysis; Conclusions; 5: Metabolic Engineering of Corynebacterium glutamicum for Alternative Carbon



Source Utilization; Introduction; Engineering of Corynebacterium glutamicum for alternative carbon sources; Complex carbon sources; Summary and outlook; 6: Manipulation of Nitrogen Metabolism and Alternative Nitrogen Sources for Corynebacterium glutamicum; Ammonium assimilation in Corynebacterium glutamicum

Regulation of nitrogen metabolismManipulation of nitrogen metabolism for amino acid production; Overexpression, deletion and heterologous expression of glutamate dehydrogenase; Overexpression of glutamine synthetases; Influence of glutamate synthase on L-glutamate biosynthesis; Changing ammonium assimilation and amino acid production by manipulation of α-ketoglutarate supply; Influence of ammonium and glutamate transport systems on amino acid production; Manipulation of nitrogen regulation: influences on metabolite pools; Assimilation of alternative nitrogen sources; Concluding remarks

7: Transport, Degradation and Assimilation of Aromatic Compounds and their Regulation in Corynebacterium glutamicum Introduction; What do the Corynebacterium glutamicum genomes predict for degradation and assimilation of aromatic compounds?; Corynebacterium glutamicum grows on various aromatic compounds; Physiological adaptation of Corynebacterium glutamicum growing on aromatic compounds compared with carbohydrates; Uptake and transport of aromatic compounds in Corynebacterium glutamicum; Aromatic compounds degraded via protocatechuate branch of the β-ketoadipate pathway

Aromatic compounds degraded via the catechol branch of the β-ketoadipate pathway

Sommario/riassunto

Corynebacterium glutamicum is most widely known for its role in the industrial production of L-glutamate and L-lysine and as a platform organism for the production of a variety of fine chemicals, biofuels and polymers. The organism's accessibility to genetic manipulation has resulted in a wealth of data on its metabolism and regulatory networks; this in turn makes C. glutamicum the model organism of choice in white biotechnology. A key development in recent years has been the engineering of C. glutamicum to utilize a broader spectrum of carbon sources (e.g. glycerol, galactose and pentose suga