1.

Record Nr.

UNINA9910827983803321

Autore

Simon Marvin Kenneth <1939->

Titolo

Digital communication over fading channels / / Marvin K. Simon and Mohamed-Slim Alouini

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-Interscience, c2005

ISBN

1-280-27533-2

9786610275335

0-470-36120-4

0-471-71523-9

0-471-71522-0

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (936 p.)

Collana

Wiley series in telecommunications and signal processing

Classificazione

B6210D

Altri autori (Persone)

AlouiniMohamed-Slim

Disciplina

621.382

Soggetti

Digital communications - Reliability - Mathematics

Radio - Transmitters and transmission - Fading

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Digital Communication over Fading Channels -- CONTENTS -- Preface -- Nomenclature -- PART 1 FUNDAMENTALS -- CHAPTER 1 Introduction -- 1.1 System Performance Measures -- 1.1.1 Average Signal-to-Noise Ratio (SNR) -- 1.1.2 Outage Probability -- 1.1.3 Average Bit Error Probability (BEP) -- 1.1.4 Amount of Fading -- 1.1.5 Average Outage Duration -- 1.2 Conclusions -- References -- CHAPTER 2 Fading Channel Characterization and Modeling -- 2.1 Main Characteristics of Fading Channels -- 2.1.1 Envelope and Phase Fluctuations -- 2.1.2 Slow and Fast Fading -- 2.1.3 Frequency-Flat and Frequency-Selective Fading -- 2.2 Modeling of Flat-Fading Channels -- 2.2.1 Multipath Fading -- 2.2.1.1 Rayleigh -- 2.2.1.2 Nakagami-q (Hoyt) -- 2.2.1.3 Nakagami-n (Rice) -- 2.2.1.4 Nakagami-m -- 2.2.1.5 Weibull -- 2.2.1.6 Beckmann -- 2.2.1.7 Spherically-Invariant Random Process Model -- 2.2.2 Log-Normal Shadowing -- 2.2.3 Composite Multipath/Shadowing -- 2.2.3.1 Composite Gamma/Log-Normal Distribution -- 2.2.3.2 Suzuki Distribution -- 2.2.3.3 K Distribution -- 2.2.3.4 Rician Shadowed Distributions -- 2.2.4 Combined (Time-Shared) Shadowed/Unshadowed Fading -- 2.3 Modeling of Frequency-



Selective Fading Channels -- References -- CHAPTER 3 Types of Communication -- 3.1 Ideal Coherent Detection -- 3.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) -- 3.1.2 Quadrature Amplitude-Shift-Keying (QASK) or Quadrature Amplitude Modulation (QAM) -- 3.1.3 M-ary Phase-Shift-Keying (M-PSK) -- 3.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) -- 3.1.4.1 π/4-QPSK -- 3.1.5 Offset QPSK (OQPSK) or Staggered QPSK (SQPSK) -- 3.1.6 M-ary Frequency-Shift-Keying (M-FSK) -- 3.1.7 Minimum-Shift-Keying (MSK) -- 3.2 Nonideal Coherent Detection -- 3.3 Noncoherent Detection -- 3.4 Partially Coherent Detection -- 3.4.1 Conventional Detection.

3.4.1.1 One-Symbol Observation -- 3.4.1.2 Multiple-Symbol Observation -- 3.4.2 Differentially Coherent Detection -- 3.4.2.1 M-ary Differential Phase-Shift-Keying (M-DPSK) -- 3.4.2.2 Conventional Detection (Two-Symbol Observation) -- 3.4.2.3 Multiple-Symbol Detection -- 3.4.3 π/4-Differential QPSK (π/4-DQPSK) -- References -- PART 2 MATHEMATICAL TOOLS -- CHAPTER 4 Alternative Representations of Classical Functions -- 4.1 Gaussian Q-Function -- 4.1.1 One-Dimensional Case -- 4.1.2 Two-Dimensional Case -- 4.1.3 Other Forms for One- and Two-Dimensional Cases -- 4.1.4 Alternative Representations of Higher Powers of the Gaussian Q-Function -- 4.2 Marcum Q-Function -- 4.2.1 First-Order Marcum Q-Function -- 4.2.1.1 Upper and Lower Bounds -- 4.2.2 Generalized (mth-Order) Marcum Q-Function -- 4.2.2.1 Upper and Lower Bounds -- 4.3 The Nuttall Q-Function -- 4.4 Other Functions -- References -- Appendix 4A. Derivation of Eq. (4.2) -- CHAPTER 5 Useful Expressions for Evaluating Average Error Probability Performance -- 5.1 Integrals Involving the Gaussian Q-Function -- 5.1.1 Rayleigh Fading Channel -- 5.1.2 Nakagami-q (Hoyt) Fading Channel -- 5.1.3 Nakagami-n (Rice) Fading Channel -- 5.1.4 Nakagami-m Fading Channel -- 5.1.5 Log-Normal Shadowing Channel -- 5.1.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel -- 5.2 Integrals Involving the Marcum Q-Function -- 5.2.1 Rayleigh Fading Channel -- 5.2.2 Nakagami-q (Hoyt) Fading Channel -- 5.2.3 Nakagami-n (Rice) Fading Channel -- 5.2.4 Nakagami-m Fading Channel -- 5.2.5 Log-Normal Shadowing Channel -- 5.2.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel -- 5.2.7 Some Alternative Closed-Form Expressions -- 5.3 Integrals Involving the Incomplete Gamma Function -- 5.3.1 Rayleigh Fading Channel -- 5.3.2 Nakagami-q (Hoyt) Fading Channel -- 5.3.3 Nakagami-n (Rice) Fading Channel.

5.3.4 Nakagami-m Fading Channel -- 5.3.5 Log-Normal Shadowing Channel -- 5.3.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel -- 5.4 Integrals Involving Other Functions -- 5.4.1 The M-PSK Error Probability Integral -- 5.4.1.1 Rayleigh Fading Channel -- 5.4.1.2 Nakagami-m Fading Channel -- 5.4.2 Arbitrary Two-Dimensional Signal Constellation Error Probability Integral -- 5.4.3 Higher-Order Integer Powers of the Gaussian Q-Function -- 5.4.3.1 Rayleigh Fading Channel -- 5.4.3.2 Nakagami-m Fading Channel -- 5.4.4 Integer Powers of M-PSK Error Probability Integrals -- 5.4.4.1 Rayleigh Fading Channel -- References -- Appendix 5A. Evaluation of Definite Integrals Associated with Rayleigh and Nakagami-m Fading -- 5A.1 Exact Closed-Form Results -- 5A.2 Upper and Lower Bounds -- CHAPTER 6 New Representations of Some Probability Density and Cumulative Distribution Functions for Correlative Fading Applications -- 6.1 Bivariate Rayleigh PDF and CDF -- 6.2 PDF and CDF for Maximum of Two Rayleigh Random Variables -- 6.3 PDF and CDF for Maximum of Two Nakagami-m Random Variables -- 6.4 PDF and CDF for Maximum and Minimum of Two Log-Normal Random Variables --



6.4.1 The Maximum of Two Log-Normal Random Variables -- 6.4.2 The Minimum of Two Log-Normal Random Variables -- References -- PART 3 OPTIMUM RECEPTION AND PERFORMANCE EVALUATION -- CHAPTER 7 Optimum Receivers for Fading Channels -- 7.1 The Case of Known Amplitudes, Phases, and Delays-Coherent Detection -- 7.2 The Case of Known Phases and Delays but Unknown Amplitudes -- 7.2.1 Rayleigh Fading -- 7.2.2 Nakagami-m Fading -- 7.3 The Case of Known Amplitudes and Delays but Unknown Phases -- 7.4 The Case of Known Delays but Unknown Amplitudes and Phases -- 7.4.1 One-Symbol Observation-Noncoherent Detection -- 7.4.1.1 Rayleigh Fading -- 7.4.1.2 Nakagami-m Fading.

7.4.2 Two-Symbol Observation-Conventional Differentially Coherent Detection -- 7.4.2.1 Rayleigh Fading -- 7.4.2.2 Nakagami-m Fading -- 7.4.3 N(s)-Symbol Observation-Multiple Differentially Coherent Detection -- 7.4.3.1 Rayleigh Fading -- 7.4.3.2 Nakagami-m Fading -- 7.5 The Case of Unknown Amplitudes, Phases, and Delays -- 7.5.1 One-Symbol Observation-Noncoherent Detection -- 7.5.1.1 Rayleigh Fading -- 7.5.1.2 Nakagami-m Fading -- 7.5.2 Two-Symbol Observation-Conventional Differentially Coherent Detection -- References -- CHAPTER 8 Performance of Single-Channel Receivers -- 8.1 Performance Over the AWGN Channel -- 8.1.1 Ideal Coherent Detection -- 8.1.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) -- 8.1.1.2 Quadrature Amplitude-Shift-Keying (QASK) or Quadrature Amplitude Modulation (QAM) -- 8.1.1.3 M-ary Phase-Shift-Keying (M-PSK) -- 8.1.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) and π/4-QPSK -- 8.1.1.5 Offset QPSK (OQPSK) or Staggered QPSK (SQPSK) -- 8.1.1.6 M-ary Frequency-Shift-Keying (M-FSK) -- 8.1.1.7 Minimum-Shift-Keying (MSK) -- 8.1.2 Nonideal Coherent Detection -- 8.1.3 Noncoherent Detection -- 8.1.4 Partially Coherent Detection -- 8.1.4.1 Conventional Detection (One-Symbol Observation) -- 8.1.4.2 Multiple-Symbol Detection -- 8.1.5 Differentially Coherent Detection -- 8.1.5.1 M-ary Differential Phase-Shift-Keying (M-DPSK) -- 8.1.5.2 M-DPSK with Multiple-Symbol Detection -- 8.1.5.3 π/4-Differential QPSK (π/4-DQPSK) -- 8.1.6 Generic Results for Binary Signaling -- 8.2 Performance Over Fading Channels -- 8.2.1 Ideal Coherent Detection -- 8.2.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) -- 8.2.1.2 Quadrature Amplitude-Shift-Keying (QASK) or Quadrature Amplitude Modulation (QAM) -- 8.2.1.3 M-ary Phase-Shift-Keying (M-PSK).

8.2.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) and π/4-QPSK -- 8.2.1.5 Offset QPSK (OQPSK) or Staggered QPSK (SQPSK) -- 8.2.1.6 M-ary Frequency-Shift-Keying (M-FSK) -- 8.2.1.7 Minimum-Shift-Keying (MSK) -- 8.2.2 Nonideal Coherent Detection -- 8.2.2.1 Simplified Noisy Reference Loss Evaluation -- 8.2.3 Noncoherent Detection -- 8.2.4 Partially Coherent Detection -- 8.2.5 Differentially Coherent Detection -- 8.2.5.1 M-ary Differential Phase-Shift-Keying (M-DPSK)-Slow Fading -- 8.2.5.2 M-ary Differential Phase-Shift-Keying (M-DPSK)-Fast Fading -- 8.2.5.3 π/4-Differential QPSK (π/4-DQPSK) -- 8.2.6 Performance in the Presence of Imperfect Channel Estimation -- 8.2.6.1 Signal Model and Symbol Error Probability Evaluation for Rayleigh Fading -- 8.2.6.2 Special Cases -- References -- Appendix 8A. Stein's Unified Analysis of the Error Probability Performance of Certain Communication Systems -- CHAPTER 9 Performance of Multichannel Receivers -- 9.1 Diversity Combining -- 9.1.1 Diversity Concept -- 9.1.2 Mathematical Modeling -- 9.1.3 Brief Survey of Diversity Combining Techniques -- 9.1.3.1 Pure Combining Techniques -- 9.1.3.2 Hybrid Combining Techniques -- 9.1.4 Complexity-



Performance Tradeoffs -- 9.2 Maximal-Ratio Combining (MRC) -- 9.2.1 Receiver Structure -- 9.2.2 PDF-Based Approach -- 9.2.3 MGF-Based Approach -- 9.2.3.1 Average Bit Error Rate of Binary Signals -- 9.2.3.2 Average Symbol Error Rate of M-PSK Signals -- 9.2.3.3 Average Symbol Error Rate of M-AM Signals -- 9.2.3.4 Average Symbol Error Rate of Square M-QAM Signals -- 9.2.4 Bounds and Asymptotic SER Expressions -- 9.3 Coherent Equal Gain Combining -- 9.3.1 Receiver Structure -- 9.3.2 Average Output SNR -- 9.3.3 Exact Error Rate Analysis -- 9.3.3.1 Binary Signals -- 9.3.3.2 Extension to M-PSK Signals -- 9.3.4 Approximate Error Rate Analysis -- 9.3.5 Asymptotic Error Rate Analysis.

9.4 Noncoherent and Differentially Coherent Equal Gain Combining.

Sommario/riassunto

"Digital Communication over Fading Channels, Second Edition is an indispensable resource for graduate students, researchers investigating these systems, and practicing engineers responsible for evaluating their performance."--Jacket.