|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910827786703321 |
|
|
Autore |
Nadler Sam B. |
|
|
Titolo |
Embeddability and structure properties of real curves / / by Sam B. Nadler, Jr. and J. Quinn |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , [1972] |
|
©1972 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (82 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; number 125 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Metric spaces |
Continuity |
Manifolds (Mathematics) |
Curves |
Topological imbeddings |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
|
|
|
|
|
Nota di contenuto |
|
""TABLE OF CONTENTS""; ""1. INTRODUCTION AND BASIC DEFINITIONS""; ""Definition of half-ray curve and real curve""; ""Structure Theorem for Half-ray Curves""; ""Embedding Theorem for Half-ray Curves""; ""Definition of K[sub(+)] , K_ , and singular sets""; ""Remark 1.1""; ""2. STRUCTURE THEOREMS""; ""Structure Theorem for K[sub(+)] and K_""; ""Structure Theorem for Real Curves""; ""Corollary 2.1""; ""3. PARAMETERIZATION""; ""Parameterization Theorem""; ""4. SOME EXAMPLES OF REAL CURVES""; ""Figure 1 - ""Moby Dick""""; ""Figure 2 (i) and Figure 2 (ii)""; ""Figure 3 - ""Coffee-percolator"""" |
""Figure 4 - ""Upside-down-elephant""""""Figure 5 - ""Badly-cracked-egg""""; ""Figure 6 - ""Fry-pan-on-a-grill""""; ""Figure 7 - ""Spider-on-a-thread""""; ""5. EMBEDDING""; ""Embedding Theorem for Real Curves""; ""Definition of noose-like chain""; ""Definition of property y""; ""Definition of (Î?, λ)-admissible link with center x[sub(1)]""; ""Definition of ""admissible"" noose-like chain""; ""Definition of admissible component of S, A(S)""; ""Remark 5.1""; ""Definition of standard embedding of â?? in the plane""; ""Lemma 5.6""; ""Non-embeddability Theorem"" |
|
|
|
|