| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910695384503321 |
|
|
Autore |
Webre Philip |
|
|
Titolo |
Financing universal telephone service [[electronic resource]] |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Washington, D.C.] : , : Congress of the U.S., Congressional Budget Office, , [2005] |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
xii, 20 pages : digital, PDF file |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Soggetti |
|
Telephone - Taxation - United States |
Telephone - Government policy - United States |
Telecommunication systems - United States - Finance |
Telephone - Rates - United States |
Long distance telephone service - United States |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Title from title screen (viewed on Dec. 19, 2005). |
"Philip Webre ... prepared the paper"--Pref. |
"March 2005." |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910705712103321 |
|
|
Autore |
Eggert Christopher A. |
|
|
Titolo |
CFD study of NACA 0018 airfoil with flow control / / Christopher A. Eggert, Christopher L. Rumsey |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , April 2017 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (34 pages) : color illustrations |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Soggetti |
|
Active control |
Airfoils |
Flow distribution |
Navier-Stokes equation |
Reynolds averaging |
Wind tunnel tests |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"April 2017." |
"Performing organization: NASA Langley Research Center"--Report documentation page. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 11-13). |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910827764803321 |
|
|
Autore |
Benkart Georgia <1949-> |
|
|
Titolo |
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2009 |
|
©2009 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (164 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 197, Number 920 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 197, Number 920 (second of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case"" |
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras"" |
""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in |
|
|
|
|
|
|
|
|
|
|
opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]"" |
""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography"" |
|
|
|
|
|
| |