1.

Record Nr.

UNINA9910695384503321

Autore

Webre Philip

Titolo

Financing universal telephone service [[electronic resource]]

Pubbl/distr/stampa

[Washington, D.C.] : , : Congress of the U.S., Congressional Budget Office, , [2005]

Descrizione fisica

xii, 20 pages : digital, PDF file

Collana

A CBO paper

Soggetti

Telephone - Taxation - United States

Telephone - Government policy - United States

Telecommunication systems - United States - Finance

Telephone - Rates - United States

Long distance telephone service - United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Dec. 19, 2005).

"Philip Webre ... prepared the paper"--Pref.

"March 2005."

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9910705712103321

Autore

Eggert Christopher A.

Titolo

CFD study of NACA 0018 airfoil with flow control / / Christopher A. Eggert, Christopher L. Rumsey

Pubbl/distr/stampa

Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , April 2017

Descrizione fisica

1 online resource (34 pages) : color illustrations

Collana

NASA/TM ; ; 2017-219602

Soggetti

Active control

Airfoils

Flow distribution

Navier-Stokes equation

Reynolds averaging

Wind tunnel tests

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"April 2017."

"Performing organization: NASA Langley Research Center"--Report documentation page.

Nota di bibliografia

Includes bibliographical references (pages 11-13).



3.

Record Nr.

UNINA9910827764803321

Autore

Benkart Georgia <1949->

Titolo

The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2009

©2009

ISBN

1-4704-0526-1

Descrizione fisica

1 online resource (164 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 197, Number 920

Disciplina

512/.482

Soggetti

Lie algebras

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 197, Number 920 (second of 5 numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""

""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras  g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras""

""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in



opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(â€?)]-primitive vectors in  g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of  g[sub(1)]""

""4.8. Determining the negative part when  g[sub(1)] is irreducible""""4.9. Determining the negative part when  g[sub(1)] is reducible""; ""4.10. The case that  g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography""