1.

Record Nr.

UNINA9910826220503321

Autore

Deen M. Jamal

Titolo

Silicon photonics : fundamentals and devices / / M.J. Deen, P.K. Basu

Pubbl/distr/stampa

Chichester, West Sussex, UK ; ; Hoboken, N.J., : Wiley, 2012

ISBN

9786613695079

9781119940906

1119940907

9781280784682

1280784687

9781119945154

1119945151

9781119945161

111994516X

Edizione

[1st edition]

Descrizione fisica

1 online resource (455 p.)

Collana

Wiley Series in Materials for Electronic & Optoelectronic Applications

Altri autori (Persone)

BasuP. K (Prasanta Kumar)

Disciplina

621.38152

Soggetti

Silicon - Optical properties

Optoelectronic devices

Photonics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Silicon Photonics: Fundamentals and Devices; Contents; Series Preface; Preface; 1 Introduction to Silicon Photonics; 1.1 Introduction; 1.2 VLSI: Past, Present, and Future Roadmap; 1.3 The Interconnect Problem in VLSI; 1.4 The Long-Haul Optical Communication Link; 1.4.1 Basic Link and Components; 1.4.2 Materials and Integration; 1.5 Data Network; 1.6 Conclusions; 1.7 Scope of the Book; References; 2 Basic Properties of Silicon; 2.1 Introduction; 2.2 Band Structure; 2.2.1 E-k Diagram: General Considerations; 2.2.2 Band Properties near Extremas; 2.2.3 Refined Theory for Band Structures

2.2.4 Temperature- and Pressure-Dependent Band Gap 2.2.5 Band Structure in Ge; 2.3 Density-of-States Function; 2.4 Impurities; 2.4.1 Donors and Acceptors; 2.4.2 Isoelectronic Impurities; 2.5 Alloys of Silicon and Other Group IV Elements; 2.5.1 Different Alloy Systems;



2.5.2 Lattice Constants; 2.5.3 Band Structures of Unstrained Alloys; 2.6 Heterojunctions and Band Lineup; 2.7 Si-Based Heterostructures; 2.7.1 Lattice-Mismatched Heteroepitaxy; 2.7.2 Pseudomorphic Growth and Critical Thickness; 2.7.3 Elasticity Theory: Stress and Strain; 2.7.4 Expressions for Critical Thickness

2.7.5 Strain Symmetric Structures and Virtual Substrates 2.7.6 Band Offsets and Band Lineup; 2.7.7 Electronic Properties of SiGe/Si Heterostructures; 2.8 Direct Gap: Ge/SiGeSn Heterojunctions; 2.8.1 Structures; 2.8.2 Band Edges and Band Lineup; Problems; References; Suggested Readings; 3 Quantum Structures; 3.1 Introduction; 3.2 Quantum Wells; 3.2.1 Condition for Quantum Confinement; 3.2.2 A Representative Structure; 3.2.3 Simplified Energy Levels; 3.2.4 Density-of-States in Two Dimensions; 3.2.5 Finite Quantum Well; 3.2.6 Refined Methods; 3.2.7 Different Band Alignments

3.3 Quantum Wires and Dots 3.3.1 Subbands and DOS in Quantum Wires; 3.3.2 Quantum Dots; 3.4 Superlattices; 3.5 Si-Based Quantum Structures; 3.5.1 Electron Subband Structure; 3.5.2 Hole Subbands; 3.5.3 Quantum Wells and Barriers; 3.6 Effect of Electric Field; Problems; References; Suggested Readings; 4 Optical Processes; 4.1 Introduction; 4.2 Optical Constants; 4.3 Basic Concepts; 4.3.1 Absorption and Emission; 4.3.2 Absorption and Emission Rates; 4.4 Absorption Processes in Semiconductors; 4.5 Fundamental Absorption in Direct Gap; 4.5.1 Conservation Laws

4.5.2 Calculation of Absorption Coefficient 4.6 Fundamental Absorption in Indirect Gap; 4.6.1 Theory of Absorption; 4.6.2 Absorption Spectra in Si; 4.6.3 Absorption Spectra in Ge; 4.7 Absorption and Gain; 4.8 Intervalence Band Absorption; 4.9 Free-carrier Absorption; 4.10 Recombination and Luminescence; 4.10.1 Luminescence Lifetime; 4.10.2 Carrier Lifetime: Dependence on Carrier Density; 4.10.3 Absorption and Recombination; 4.10.4 Microscopic Theory of Recombination; 4.11 Nonradiative Recombination; 4.11.1 Recombination via Traps; 4.11.2 Auger Recombination; 4.11.3 Surface Recombination

4.11.4 Recombination of Complexes

Sommario/riassunto

The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems.   Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon