| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910826193603321 |
|
|
Autore |
Galkowski Jeffrey |
|
|
Titolo |
Distribution of resonances in scattering by thin barriers / / Jeffrey Galkowski |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2019] |
|
©2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (ix, 152 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; Volume 259, Number 1248 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"May 2019, volume 259, number 1248 (fifth of 8 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 149-152). |
|
|
|
|
|
|
Sommario/riassunto |
|
The author studies high energy resonances for the operators $-\Delta_{\partial\Omega,\delta}:=-\Delta \delta_{\partial\Omega}\otimes V\quad \textrm{and}\quad -\Delta_{\partial\Omega,\delta'}:=-\Delta \delta_{\partial\Omega}'\otimes V\partial_\nu$ where $\Omega\subset{\mathbb{R}}^{d}$ is strictly convex with smooth boundary, $V:L^{2}(\partial\Omega)\to L^{2}(\partial\Omega)$ may depend on frequency, and $\delta_{\partial\Omega}$ is the surface measure on $\partial\Omega$. |
|
|
|
|
|
|
|
| |