| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910692970903321 |
|
|
Autore |
Williams Louis J. |
|
|
Titolo |
Laminar flow aircraft certification / / compiled by Louis J. Williams |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Washington, D.C. : , : National Aeronautics and Space Administration, Scientific and Technical Information Branch, , May 1986 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xii, 322 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Soggetti |
|
Laminar flow |
Certification |
Aircraft design |
Flow visualization |
Conferences |
Online resources. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 14-15). |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910825354703321 |
|
|
Titolo |
Europe thirty years after 1989 : transformations of values, memory, and identity / / edited by Tomas Kavaliauskas |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Leiden ; ; Boston : , : Brill Rodopi, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
90-04-44358-4 |
9789004443587 |
9004443584 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xii, 274 pages) : illustratons |
|
|
|
|
|
|
Collana |
|
Central European Value Studies |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Pays de l' Est |
UE/CE Droit |
Réformes économiques |
Marchés |
Droit de la concurrence |
Sociétés |
memoire |
Identité nationale |
economic reform |
competition law |
market |
Civilization - History |
civil society |
national identity |
Europe History 1989- |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
East-Central Europe searching for (European) values : how to be more than the "proud periphery"? / Ladislav Cabada -- Thirty years in search of identity in Central Europe / Tomas Kavaliauskas -- Conservative assertiveness in Central and Eastern Europe : case studies from Poland |
|
|
|
|
|
|
|
|
|
|
|
and Hungary / Nicolas Hayoz and Magdalena Solska -- Croatia after 1989 : memories of socialism in post-socialist times / Josip Zanki and Nevena Škrbić Alempijević -- Types of social memory and the subordination of identities of ethnic minorities in Latvia / Deniss Hanovs and Vladislav Volkov -- The ideal of absolute hospitality and the reality of anti-migrant fences / Rūta Bagdanavičiūtė -- "A home for our children" : the Bulgarian (dis)illusion with democratic society thirty years later / Valentina Gueorguieva, Galina Goncharova, and Slavka Karakusheva -- Envisioning Europe from the East : à la recherche du temps perdu with Václav Havel and Lennart Meri / Maria Mälksoo -- The rise of the public relations man and the decline of the Soviet "intelligentsia" after 1989 / Gintautas Mažeikis -- From ideology of culture to cultural critique : "Kultūros barai" journal and the changing roles of Lithuanian intellectuals (1989-2019) / Almantas Samalavičius -- From the Baltic way to the #CatalanReferendum : achieving statehood through peaceful protest : two European models face to face with 30 years between them / Jordi Arrufat Agramunt. |
|
|
|
|
|
|
Sommario/riassunto |
|
For the last thirty years the year 1989 has symbolized a European annus mirabilis , standing for such events as the fall of the Berlin Wall and the impending collapse of the Soviet Union. Cultural and political transformations in Western Europe due to the rise of the migrant crisis are now echoed in East-Central Europe. In Europe Thirty Years After 1989 , the authors jointly explore the recent history of former socialist countries such as Bulgaria, Croatia, Poland, Hungary, the Czech republic, the Baltic States, and Russia. Thirty years ago some of these countries stood as a paradigmatic example of peaceful and liberal patriotism, but during the past thirty years some countries have experienced transformations in their values, memory and identity. A shift towards illiberal democracy has occurred, although not without the overlapping trends in Western and Southern Europe. This book is for those who wish to join and learn from the search for an interpretation and answer(s) to the question: what happened to the legacy of 1989 over the past thirty years, and why did these changes and transformations occur?. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910831043103321 |
|
|
Titolo |
Polymer crystallization : methods, characterization, and applications / / edited by Jyotishkumar Parameswaranpillai [and four others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83924-0 |
3-527-83922-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (386 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Chapter 1 Introduction to Polymer Crystallization -- 1.1 Introduction -- 1.2 Degree of Crystallinity -- 1.3 Thermodynamics on the Crystallization of Polymers Characteristics -- 1.4 Polymer Crystallization Mechanism -- 1.4.1 Strain‐Induced Crystallization of Polymer -- 1.4.2 Crystallization of Polymer from Solution -- 1.5 Applications of Crystalline Polymer -- References -- Chapter 2 Characterization of Polymer Crystallization by Using Thermal Analysis -- 2.1 Introduction -- 2.2 Basic Principle -- 2.2.1 General Idea -- 2.2.2 Application of DSC Method -- 2.3 Characterization of Polymer Crystallization According to Isothermal Crystallization Process -- 2.3.1 Performance of Isothermal Crystallization Process -- 2.3.2 Analysis of Isothermal Crystallization Process -- 2.3.2.1 Crystal Geometry -- 2.3.2.2 Characterization of Crystallization Rate -- 2.3.2.3 Characterization of Crystallization Activation Energy -- 2.3.3 Isothermal Crystallization of Some Polymer Composites -- 2.4 Characterization of Polymer Non‐isothermal Crystallization Process -- 2.4.1 Basics of Nonlinear Crystallization Modeling -- 2.4.2 Performance of Non‐isothermal Crystallization Process -- 2.4.3 Analysis of Crystal Geometry During Non‐isothermal Crystallization Process -- 2.4.3.1 Jeziorny‐Modified Avrami Equation -- 2.4.3.2 Ozawa Model -- 2.4.3.3 Mo model -- 2.4.4 Determination of Crystallization Activation Energy |
|
|
|
|
|
|
|
|
|
(E) -- 2.4.5 Analysis of Relative Crystallinity -- 2.5 Conclusion -- Acknowledgment -- References -- Chapter 3 Crystallization Behavior of Polypropylene and Its Blends and Composites -- 3.1 Introduction - Polypropylene Crystallinity in Perspective -- 3.2 Chain Structure and Molecular Weight Effects for iPP Crystallinity and Polymorphism -- 3.3 Nucleation of iPP. |
3.4 Crystallization in Multiphase Copolymers, Blends, and Composites -- 3.5 Processing Effects and Resulting Properties -- 3.6 Investigation Methods for PP Crystallization and Morphology -- Acknowledgments -- References -- Chapter 4 Crystallization of PE and PE‐Based Blends, and Composites -- 4.1 An Introduction to Polyethylene, Its Crystallization, and Kinetics -- 4.1.1 Basics of Structure and Morphology -- 4.1.2 Theory of Crystallization and Its Kinetics -- 4.2 Experimental Study on Crystallization Kinetics of Polyethylene -- 4.2.1 Isothermal Crystallization -- 4.2.2 Non‐isothermal Crystallization -- 4.3 Nucleation Theory -- 4.4 Crystal Growth -- 4.5 PE Blends and Co‐crystallization -- 4.6 PE Nanocomposites -- 4.7 Summary -- References -- Chapter 5 Crystallization of PLA and Its Blends and Composites -- 5.1 Introduction -- 5.2 Crystallization of Macromolecules -- 5.2.1 Improvement of PLA Crystallization Kinetics -- 5.3 Polylactic Acid Nucleation -- 5.3.1 Inorganic Nucleating Agents -- 5.3.2 Organic Nucleating Agents -- 5.4 Polylactic Acid Blends -- 5.4.1 Polylactic Acid Binary Blends with Biopolymers-Starch and PHAs -- 5.4.2 Polylactic Acid Binary Blends with Biodegradable Polymers - PCL, PBAT, and PBS -- 5.5 Polylactic Acid Composites -- 5.5.1 Polylactic Acid - Natural Fiber Composites -- 5.5.2 Polylactic Acid - Nanocomposites -- 5.6 Conclusions -- References -- Chapter 6 Crystallization in PLLA‐Based Blends, and Composites -- 6.1 Introduction -- 6.2 Chemical and Crystal Structure of PLLA -- 6.3 PLLA Properties: Glass Transition and Melting Temperature -- 6.3.1 Glass Transition Temperature -- 6.3.2 Melting Temperature -- 6.4 PLLA Crystallization -- 6.4.1 PLLA Crystallization Study Through Spherulite Growth -- 6.4.2 Lauritzen and Hoffman Theory in PLLA Crystallization -- 6.4.3 Crystallization Kinetics Through Calorimetry Study. |
6.5 Crystallization of PLLA in Blends -- 6.6 Crystallization of PLLA in Nanocomposites -- 6.7 Crystallization of PLLA in Block Copolymer -- 6.8 Crystallization of PLLA After Adding Nucleating Agents -- 6.9 PLLA Plasticization -- 6.10 Conclusion and Future Outlook -- References -- Chapter 7 Crystallization in PCL‐Based Blends and Composites -- 7.1 Introduction -- 7.2 Crystallinity of PCL and the Factors Affecting Crystallinity -- 7.3 Crystalline Behavior of PCL‐Based Multiphase Polymer Systems -- 7.3.1 Crystallization Behavior of Blends of PCL -- 7.3.2 Crystallization Behavior of Block Copolymers of PCL -- 7.3.3 Effect of Fillers on the Crystalline Behavior of PCL -- 7.4 Conclusion -- References -- Chapter 8 Crystallization and Shape Memory Effect -- 8.1 Introduction -- 8.2 Shape Memory Cycle -- 8.3 Mechanism of Shape Memory Effect -- 8.4 Types of Shape Memory Polymers -- 8.5 Biomedical Applications of Shape Memory Polymers -- 8.5.1 Tissue Engineering -- 8.5.2 Bone Engineering -- 8.5.3 Medical Stents -- 8.5.4 Drug Delivery Application -- 8.5.5 SMPs as Self‐Healing Materials -- 8.5.6 Vascular Embolization -- 8.6 Conclusion -- References -- Chapter 9 3D Printing of Crystalline Polymers -- 9.1 Introduction -- 9.2 3D Printing Materials and Processes -- 9.2.1 Nylon and Polyamides -- 9.2.2 Polyethylene -- 9.2.3 Polyethylene Terephthalate -- 9.2.4 Polypropylene -- 9.2.5 Polylactic Acid -- 9.3 Characterization of 3D‐Printed Crystalline Polymers -- 9.3.1 Mechanical Properties/Mechanical Characteristics -- 9.3.2 Thermal Properties/Thermal Characteristics -- 9.3.3 Tribological Properties/Tribological Characteristics -- 9.4 |
|
|
|
|
|
|
|
|
Conclusion -- References -- Chapter 10 Crystallization from Anisotropic Polymer Melts -- 10.1 Introduction -- 10.2 Evaluating Anisotropy -- 10.3 Crystallization During Deformation of Networks -- 10.4 Sheared Polymer Melts. |
10.5 Crystallization During Injection Molding -- 10.6 Sheared Polymer Melts with Nucleating Agents -- 10.7 Sheared Polymer Melts with Nanoparticles -- 10.8 3D Printing Using Extrusion -- 10.8.1 In‐Situ Studies of Polymer Crystallization During 3D Printing -- 10.9 Morphology Mapping -- 10.10 Discussion -- Acknowledgments -- References -- Chapter 11 Molecular Simulations of Polymer Crystallization -- 11.1 Introduction -- 11.2 Establishment of Polymer Simulation Systems -- 11.2.1 MC Simulations -- 11.2.2 MD Simulations -- 11.2.2.1 United Atom Chain Model -- 11.2.2.2 Coarse‐Grained Polymer Model -- 11.3 Polymer Crystallization at Quiescent State -- 11.3.1 Crystal Nucleation -- 11.3.2 Intramolecular Nucleation Model -- 11.4 Nanofiller‐Induced Polymer Crystallization -- 11.4.1 Nanofiller‐Induced Homopolymer Crystallization -- 11.4.2 Nanofiller‐Induced Copolymer Crystallization -- 11.4.2.1 Nanofiller‐Induced Block Copolymer Crystallization -- 11.4.2.2 Random Copolymer Nanocomposite Crystallization -- 11.4.3 Crystallization of Polymers Grafted on Nanofillers -- 11.5 Effect of Grafting Density -- 11.6 Effect of Chain Length -- 11.7 Effect of Interfacial Interactions -- 11.8 Stereocomplex Crystallization of Polymer Blends -- 11.8.1 Simulation Details -- 11.8.2 Effects of Different Methods -- 11.8.2.1 Effect of Chain Length -- 11.8.2.2 Effect of Stretching -- 11.8.2.3 Effect of Nanofillers -- 11.8.2.4 Effect of Chain Topology -- 11.8.2.5 Effect of Chain Structure -- 11.9 Flow‐Induced Polymer Crystallization -- 11.9.1 Flow‐Induced Polymer Nucleation -- 11.9.2 Stretch‐Induced Crystalline Structure Changes -- 11.10 Summary -- References -- Chapter 12 Application, Recycling, Environmental and Safety Issues, and Future Prospects of Crystalline Polymer Composites -- 12.1 Introduction -- 12.2 Crystalline Polymers and Composites -- 12.2.1 Crystalline Polymers. |
12.2.2 Crystalline Polymer Composites -- 12.2.2.1 Crystalline Polymer Composites with Organic Reinforcements -- 12.2.2.2 Crystalline Polymer Composites with Inorganic Reinforcements -- 12.2.2.3 Crystalline Polymer Composites with Natural Reinforcements -- 12.3 Applications of Crystalline Polymer Composites -- 12.3.1 Automotive Applications of Crystalline Polymer Composites -- 12.3.2 Biomedical Applications of Crystalline Polymer Composites -- 12.3.3 Defense and Aerospace Applications of Crystalline Polymer Composites -- 12.3.4 Other Applications of Crystalline Polymer Composites -- 12.4 Recycling, Environmental, and Safety Issues of Crystalline Polymer Composites -- 12.4.1 Recycling of Glass Fiber‐Reinforced Crystalline Polymer Composites -- 12.4.2 Recycling of Carbon Fiber‐Reinforced Crystalline Polymer Composites -- 12.4.3 Recycling of Carbon Nanotubes‐Reinforced Crystalline Polymer Composites -- 12.4.4 Recycling of Natural Fiber‐Reinforced Crystalline Polymer Composites -- 12.4.5 Environmental Impact and Safety Issues of Crystalline Polymer Composites -- 12.5 Future Prospects of Crystalline Polymer Composites -- 12.6 Conclusions -- References -- Index -- EULA. |
|
|
|
|
|
| |