1.

Record Nr.

UNINA9910825222703321

Autore

Benesty Jacob

Titolo

Speech enhancement : a signal subspace perspective / / Jacob Benesty [and three others]

Pubbl/distr/stampa

Oxford : , : Academic Press, , 2014

ISBN

0-12-800253-0

Edizione

[1st ed.]

Descrizione fisica

1 online resource (vi, 135 pages) : color illustrations

Collana

Gale eBooks

Altri autori (Persone)

BenestyJacob

Disciplina

006.454

Soggetti

Speech processing systems

Signal processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Half Title; Title Page; Copyright; Contents; 1 Introduction; 1.1 History and Applications of Subspace Methods; 1.2 Speech Enhancement from a Signal Subspace Perspective; 1.3 Scope and Organization of the Work; References; 2 General Concept with the Diagonalization  of the Speech Correlation Matrix; 2.1 Signal Model and Problem Formulation; 2.2 Linear Filtering with a Rectangular Matrix; 2.3 Performance Measures; 2.3.1 Noise Reduction; 2.3.2 Speech Distortion; 2.3.3 MSE Criterion; 2.4 Optimal Rectangular Filtering Matrices; 2.4.1 Maximum SNR; 2.4.2 Wiener; 2.4.3 MVDR; 2.4.4 Tradeoff

2.4.5 LCMVReferences; 3 General Concept with the Joint Diagonalization of the Speech and Noise Correlation Matrices; 3.1 Signal Model and Problem Formulation; 3.2 Linear Filtering with a Rectangular Matrix; 3.3 Performance Measures; 3.3.1 Noise Reduction; 3.3.2 Speech Distortion; 3.3.3 MSE Criterion; 3.4 Optimal Rectangular Filtering Matrices; 3.4.1 Maximum SNR; 3.4.2 Wiener; 3.4.3 MVDR; 3.4.4 Tradeoff; 3.5 Another Signal Model; References; 4 Single-Channel Speech Enhancement in the Time Domain; 4.1 Signal Model and Problem Formulation; 4.2 Linear Filtering with a Rectangular Matrix

4.3 Performance Measures4.4 Optimal Rectangular Filtering Matrices; 4.5 Single-Channel Noise Reduction Revisited; 4.5.1 Orthogonal Decomposition; 4.5.2 Linear Filtering with a Rectangular Matrix; 4.5.3 Performance Measures; 4.5.4 Optimal Rectangular Filtering Matrices;



References; 5 Multichannel Speech Enhancement in  the Time Domain; 5.1 Signal Model and Problem Formulation; 5.2 Linear Filtering with a Rectangular Matrix; 5.3 Performance Measures; 5.3.1 Noise Reduction; 5.3.2 Speech Distortion; 5.3.3 MSE Criterion; 5.4 Optimal Rectangular Filtering Matrices; 5.4.1 Maximum SNR; 5.4.2 Wiener

5.4.3 MVDR5.4.4 Tradeoff; 5.4.5 LCMV; References; 6 Multichannel Speech Enhancement in the Frequency Domain; 6.1 Signal Model and Problem Formulation; 6.2 Linear Array Model; 6.3 Performance Measures; 6.3.1 Noise Reduction; 6.3.2 Speech Distortion; 6.3.3 MSE Criterion; 6.4 Optimal Filters; 6.4.1 Maximum SNR; 6.4.2 Wiener; 6.4.3 MVDR; 6.4.4 Tradeoff; 6.4.5 LCMV; References; 7 A Bayesian Approach to the Speech  Subspace Estimation; 7.1 Signal Model and Problem Formulation; 7.2 Estimation Based on the Minimum Mean-Square Distance; 7.3 A Closed-Form Solution Based on  the Bingham Posterior

References8 Evaluation of the Time-Domain Speech Enhancement Filters; 8.1 Evaluation of Single-Channel Filters; 8.1.1 Rank-Deficient Speech Correlation Matrix; 8.1.2 Full-Rank Speech Correlation Matrix; 8.2 Evaluation of Multichannel Filters; References; Index

Sommario/riassunto

Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes of methods and have been introduced in somewhat different contexts. Linear filtering methods originate in stochastic processes, while subspace methods have largely been based on developments in numerical linear algebra and matrix approximation theory.    This book bridges the gap between the