1.

Record Nr.

UNINA9910824679103321

Autore

De Nevers Noel <1932->

Titolo

Physical and chemical equilibrium for chemical engineers / / Noel de Nevers

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, c2012

ISBN

1-299-47547-7

1-118-13531-8

1-118-13533-4

1-118-13534-2

Edizione

[2nd ed.]

Descrizione fisica

1 recurso en línea  (382 p.) : il

Classificazione

TEC009010

Disciplina

660/.2969

Soggetti

Thermodynamics

Chemical engineering

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

PHYSICAL AND CHEMICAL EQUILIBRIUM FOR CHEMICAL ENGINEERS -- CONTENTS -- Preface -- Nomenclature -- About the Author -- 1 Introduction to Equilibrium -- 1.1 Why Study Equilibrium? -- 1.2 Stability and Equilibrium -- 1.3 Time Scales and the Approach to Equilibrium -- 1.4 Looking Ahead, Gibbs Energy -- 1.5 Units, Conversion Factors, and Notation -- 1.6 Reality and Equations -- 1.7 Phases and Phase Diagrams -- 1.8 The Plan of this Book -- 1.9 Summary -- References -- 2 Basic Thermodynamics -- 2.1 Conservation and Accounting -- 2.2 Conservation of Mass -- 2.3 Conservation of Energy -- the First Law of Thermodynamics -- 2.4 The Second Law of Thermodynamics -- 2.4.1 Reversibility -- 2.4.2 Entropy -- 2.5 Convenience Properties -- 2.6 Using the First and Second Laws -- 2.7 Datums and Reference States -- 2.8 Measurable and Immeasurable Properties -- 2.9 Work and Heat -- 2.10 The Property Equation -- 2.11 Equations of State (EOS) -- 2.11.1 EOSs Based on Theory -- 2.11.2 EOSs Based on Pure Data Fitting -- 2.12 Corresponding States -- 2.13 Departure Functions -- 2.14 The Properties of Mixtures -- 2.15 The Combined First and Second Law Statement -- Reversible Work -- 2.16 Summary -- References -- 3 The



Simplest Phase Equilibrium Examples and Some Simple Estimating Rules -- 3.1 Some General Statements About Equilibrium -- 3.2 The Simplest Example of Phase Equilibrium -- 3.2.1 A Digression, the Distinction between Vapor and Gas -- 3.2.2 Back to the Simplest Equilibrium -- 3.3 The Next Level of Complexity in Phase Equilibrium -- 3.4 Some Simple Estimating Rules: Raoult's and Henry's "Laws" -- 3.5 The General Two-Phase Equilibrium Calculation -- 3.6 Some Simple Applications of Raoult's and Henry's Laws -- 3.7 The Uses and Limits of Raoult's and Henry's Laws -- 3.8 Summary -- References -- 4 Minimization of Gibbs Energy.

4.1 The Fundamental Thermodynamic Criterion of Phase and Chemical Equilibrium -- 4.2 The Criterion of Equilibrium Applied to Two Nonreacting Equilibrium Phases -- 4.3 The Criterion of Equilibrium Applied to Chemical Reactions -- 4.4 Simple Gibbs Energy Diagrams -- 4.4.1 Comparison with Enthalpy and Entropy -- 4.4.2 Gibbs Energy Diagrams for Pressure-Driven Phase Changes -- 4.4.3 Gibbs Energy Diagrams for Chemical Reactions -- 4.5 Le Chatelier's Principle -- 4.6 Summary -- References -- 5 Vapor Pressure, the Clapeyron Equation, and Single Pure Chemical Species Phase Equilibrium -- 5.1 Measurement of Vapor Pressure -- 5.2 Reporting Vapor-Pressure Data -- 5.2.1 Normal Boiling Point (NBP) -- 5.3 The Clapeyron Equation -- 5.4 The Clausius-Clapeyron Equation -- 5.5 The Accentric Factor -- 5.6 The Antoine Equation and Other Data-Fitting Equations -- 5.6.1 Choosing a Vapor-Pressure Equation -- 5.7 Applying the Clapeyron Equation to Other Kinds of Equilibrium -- 5.8 Extrapolating Vapor-Pressure Curves -- 5.9 Vapor Pressure of Solids -- 5.10 Vapor Pressures of Mixtures -- 5.11 Summary -- References -- 6 Partial Molar Properties -- 6.1 Partial Molar Properties -- 6.2 The Partial Molar Equation -- 6.3 Tangent Slopes -- 6.4 Tangent Intercepts -- 6.5 The Two Equations for Partial Molar Properties -- 6.6 Using the Idea of Tangent Intercepts -- 6.7 Partial Mass Properties -- 6.8 Heats of Mixing and Partial Molar Enthalpies -- 6.8.1 Differential Heat of Mixing -- 6.8.2 Integral Heat of Mixing -- 6.9 The Gibbs-Duhem Equation and the Counterintuitive Behavior of the Chemical Potential -- 6.10 Summary -- References -- 7 Fugacity, Ideal Solutions, Activity, Activity Coefficient -- 7.1 Why Fugacity? -- 7.2 Fugacity Defined -- 7.3 The Use of the Fugacity -- 7.4 Pure Substance Fugacities -- 7.4.1 The Fugacity of Pure Gases -- 7.4.2 The Fugacity of Pure Liquids and Solids.

7.5 Fugacities of Species in Mixtures -- 7.6 Mixtures of Ideal Gases -- 7.7 Why Ideal Solutions? -- 7.8 Ideal Solutions Defined -- 7.8.1 The Consequences of the Ideal Solution Definition -- 7.9 Why Activity and Activity Coefficients? -- 7.10 Activity and Activity Coefficients Defined -- 7.11 Fugacity Coefficient for Pure Gases and Gas Mixtures -- 7.12 Estimating Fugacities of Individual Species in Gas Mixtures -- 7.12.1 Fugacities from Gas PvT Data -- 7.12.2 Fugacities from an EOS for Gas Mixtures -- 7.12.3 The Lewis and Randall (L-R) Fugacity Rule -- 7.12.4 Other Mixing Rules -- 7.13 Liquid Fugacities from Vapor-Liquid Equilibrium -- 7.14 Summary -- References -- 8 Vapor-Liquid Equilibrium (VLE) at Low Pressures -- 8.1 Measurement of VLE -- 8.2 Presenting Experimental VLE Data -- 8.3 The Mathematical Treatment of Low-Pressure VLE Data -- 8.3.1 Raoult's Law Again -- 8.4 The Four Most Common Types of Low-Pressure VLE -- 8.4.1 Ideal Solution Behavior (Type I) -- 8.4.2 Positive Deviations from Ideal Solution Behavior (Type II) -- 8.4.3 Negative Deviations from Ideal Solution Behavior (Type III) -- 8.4.4 Azeotropes -- 8.4.5 Two-Liquid Phase or Heteroazeotropes (Type IV) -- 8.4.6 Zero Solubility and Steam Distillation -- 8.4.7 Distillation of the Four Types of Behavior -- 8.5 Gas-Liquid Equilibrium, Henry's Law Again -- 8.6 The Effect of Modest



Pressures on VLE -- 8.6.1 Liquids -- 8.6.2 Gases, the L-R Rule -- 8.7 Standard States Again -- 8.8 Low-Pressure VLE Calculations -- 8.8.1 Bubble-Point Calculations -- 8.8.1.1 Temperature-Specified Bubble Point -- 8.8.1.2 Pressure-Specified Bubble Point -- 8.8.2 Dew-Point Calculations -- 8.8.2.1 Temperature-Specified Dew Point -- 8.8.2.2 Pressure-Specified Dew Point -- 8.8.3 Isothermal Flashes (T- and P-Specified Flashes) -- 8.8.4 Adiabatic Flashes -- 8.9 Traditional K-Factor Methods.

8.10 More Uses for Raoult's Law -- 8.10.1 Nonvolatile Solutes, Boiling-Point Elevation -- 8.10.2 Freezing-Point Depression -- 8.10.3 Colligative Properties of Solutions -- 8.11 Summary -- References -- 9 Correlating and Predicting Nonideal VLE -- 9.1 The Most Common Observations of Liquid-Phase Activity Coefficients -- 9.1.1 Why Nonideal Behavior? -- 9.1.2 The Shapes of ln, γ - x Curves -- 9.2 Limits on Activity Coefficient Correlations, the Gibbs-Duhem Equation -- 9.3 Excess Gibbs Energy and Activity Coefficient Equations -- 9.4 Activity Coefficients at Infinite Dilution -- 9.5 Effects of Pressure and Temperature on Liquid-Phase Activity Coefficients -- 9.5.1 Effect of Pressure Changes on Liquid-Phase Activity Coefficients -- 9.5.2 Effect of Temperature Changes on Liquid-Phase Activity Coefficients -- 9.6 Ternary and Multispecies VLE -- 9.6.1 Liquid-Phase Activity Coefficients for Ternary Mixtures -- 9.7 Vapor-Phase Nonideality -- 9.8 VLE from EOS -- 9.9 Solubility Parameter -- 9.10 The Solubility of Gases in Liquids, Henry's Law Again -- 9.11 Summary -- References -- 10 Vapor-Liquid Equilibrium (VLE) at High Pressures -- 10.1 Critical Phenomena of Pure Species -- 10.2 Critical Phenomena of Mixtures -- 10.3 Estimating High-Pressure VLE -- 10.3.1 Empirical K-Value Correlations -- 10.3.2 Estimation Methods for Each Phase Separately, Not Based on Raoult's Law -- 10.3.3 Estimation Methods Based on Cubic EOSs -- 10.4 Computer Solutions -- 10.5 Summary -- References -- 11 Liquid-Liquid, Liquid-Solid, and Gas-Solid Equilibrium -- 11.1 Liquid-Liquid Equilibrium (LLE) -- 11.2 The Experimental Determination of LLE -- 11.2.1 Reporting and Presenting LLE Data -- 11.2.2 Practically Insoluble Liquid Pairs at 25ºC -- 11.2.3 Partially Soluble Liquid Pairs at 25ºC -- 11.2.4 Miscible Liquid Pairs at 25ºC -- 11.2.5 Ternary LLE at 25ºC.

11.2.6 LLE at Temperatures Other Than 25ºC -- 11.3 The Elementary Theory of LLE -- 11.4 The Effect of Pressure on LLE -- 11.5 Effect of Temperature on LLE -- 11.6 Distribution Coefficients -- 11.7 Liquid-Solid Equilibrium (LSE) -- 11.7.1 One-Species LSE -- 11.7.2 The Experimental Determination of LSE -- 11.7.3 Presenting LSE Data -- 11.7.4 Eutectics -- 11.7.5 Gas Hydrates (Clathrates) -- 11.8 The Elementary Thermodynamics of LSE -- 11.9 Gas-Solid Equilibrium (GSE) at Low Pressures -- 11.10 GSE at High Pressures -- 11.11 Gas-Solid Adsorption, Vapor-Solid Adsorption -- 11.11.1 Langmuir's Adsorption Theory -- 11.11.2 Vapor-solid Adsorption, BET Theory -- 11.11.3 Adsorption from Mixtures -- 11.11.4 Heat of Adsorption -- 11.11.5 Hysteresis -- 11.12 Summary -- References -- 12 Chemical Equilibrium -- 12.1 Introduction to Chemical Reactions and Chemical Equilibrium -- 12.2 Formal Description of Chemical Reactions -- 12.3 Minimizing Gibbs Energy -- 12.4 Reaction Rates, Energy Barriers, Catalysis, and Equilibrium -- 12.5 The Basic Thermodynamics of Chemical Reactions and Its Convenient Formulations -- 12.5.1 The Law of Mass Action and Equilibrium Constants -- 12.6 Calculating Equilibrium Constants from Gibbs Energy Tables and then Using Equilibrium Constants to Calculate Equilibrium Concentrations -- 12.6.1 Change of Reactant Concentration, Reaction Coordinate -- 12.6.2 Reversible and Irreversible Reactions -- 12.7 More on Standard



States -- 12.8 The Effect of Temperature on Chemical Reaction Equilibrium -- 12.9 The Effect of Pressure on Chemical Reaction Equilibrium -- 12.9.1 Ideal Solution of Ideal Gases -- 12.9.2 Nonideal Solution, Nonideal Gases -- 12.9.3 Liquids and Solids -- 12.10 The Effect of Nonideal Solution Behavior -- 12.10.1 Liquid-Phase Nonideality -- 12.11 Other Forms of K -- 12.12 Summary -- References.

13 Equilibrium in Complex Chemical Reactions.