1.

Record Nr.

UNINA9910824178803321

Autore

Schwartz Howard M.

Titolo

Multi-agent machine learning : a reinforcement approach / / Howard M. Schwartz

Pubbl/distr/stampa

Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2014

©2014

ISBN

1-118-88448-5

1-118-88461-2

1-118-88447-7

Edizione

[1st edition]

Descrizione fisica

1 online resource (458 p.)

Classificazione

TEC008000

Disciplina

519.3

Soggetti

Reinforcement learning

Differential games

Swarm intelligence

Machine learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Cover; Title Page; Copyright; Preface; References; Chapter 1: A Brief Review of Supervised Learning; 1.1 Least Squares Estimates; 1.2 Recursive Least Squares; 1.3 Least Mean Squares; 1.4 Stochastic Approximation; References; Chapter 2: Single-Agent Reinforcement Learning; 2.1 Introduction; 2.2 n-Armed Bandit Problem; 2.3 The Learning Structure; 2.4 The Value Function; 2.5 The Optimal Value Functions; 2.6 Markov Decision Processes; 2.7 Learning Value Functions; 2.8 Policy Iteration; 2.9 Temporal Difference Learning; 2.10 TD Learning of the State-Action Function; 2.11 Q-Learning

2.12 Eligibility TracesReferences; Chapter 3: Learning in Two-Player Matrix Games; 3.1 Matrix Games; 3.2 Nash Equilibria in Two-Player Matrix Games; 3.3 Linear Programming in Two-Player Zero-Sum Matrix Games; 3.4 The Learning Algorithms; 3.5 Gradient Ascent Algorithm; 3.6 WoLF-IGA Algorithm; 3.7 Policy Hill Climbing (PHC); 3.8 WoLF-PHC Algorithm; 3.9 Decentralized Learning in Matrix Games; 3.10 Learning Automata; 3.11 Linear Reward-Inaction Algorithm; 3.12 Linear Reward-



Penalty Algorithm; 3.13 The Lagging Anchor Algorithm; 3.14 L R-I Lagging Anchor Algorithm; References

Chapter 4: Learning in Multiplayer Stochastic Games4.1 Introduction; 4.2 Multiplayer Stochastic Games; 4.3 Minimax-Q Algorithm; 4.4 Nash Q-Learning; 4.5 The Simplex Algorithm; 4.6 The Lemke-Howson Algorithm; 4.7 Nash-Q Implementation; 4.8 Friend-or-Foe Q-Learning; 4.9 Infinite Gradient Ascent; 4.10 Policy Hill Climbing; 4.11 WoLF-PHC Algorithm; 4.12 Guarding a Territory Problem in a Grid World; 4.13 Extension of L R-I Lagging Anchor Algorithm to Stochastic Games; 4.14 The Exponential Moving-Average Q-Learning (EMA Q-Learning) Algorithm

4.15 Simulation and Results Comparing EMA Q-Learning to Other MethodsReferences; Chapter 5: Differential Games; 5.1 Introduction; 5.2 A Brief Tutorial on Fuzzy Systems; 5.3 Fuzzy Q-Learning; 5.4 Fuzzy Actor-Critic Learning; 5.5 Homicidal Chauffeur Differential Game; 5.6 Fuzzy Controller Structure; 5.7 Q(λ)-Learning Fuzzy Inference System; 5.8 Simulation Results for the Homicidal Chauffeur; 5.9 Learning in the Evader-Pursuer Game with Two Cars; 5.10 Simulation of the Game of Two Cars; 5.11 Differential Game of Guarding a Territory

5.12 Reward Shaping in the Differential Game of Guarding a Territory5.13 Simulation Results; References; Chapter 6: Swarm Intelligence and the Evolution of Personality Traits; 6.1 Introduction; 6.2 The Evolution of Swarm Intelligence; 6.3 Representation of the Environment; 6.4 Swarm-Based Robotics in Terms of Personalities; 6.5 Evolution of Personality Traits; 6.6 Simulation Framework; 6.7 A Zero-Sum Game Example; 6.8 Implementation for Next Sections; 6.9 Robots Leaving a Room; 6.10 Tracking a Target; 6.11 Conclusion; References; Index; End User License Agreement

Sommario/riassunto

"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--

"Provide an in-depth coverage of multi-player, differential games and Gam theory"--