1.

Record Nr.

UNINA9910823588803321

Titolo

Metal cutting : research advances / / J. Paulo Davim, editor

Pubbl/distr/stampa

New York, : Nova Science Publishers, c2010

ISBN

1-61122-573-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (257 p.)

Collana

Material and manufacturing technology

Altri autori (Persone)

DavimJ. Paulo

Disciplina

671.5/3

Soggetti

Machining

Metal-cutting

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- METAL CUTTING:  RESEARCH ADVANCES -- METAL CUTTING:  RESEARCH ADVANCES -- CONTENTS -- PREFACE -- Chapter 1    METAL CUTTING: SYSTEM OUTLOOK  OF RESEARCH AND APPLICATION ASPECTS -- ABSTRACT -- 1. INTRODUCTION -- 2. THE IMPORTANCE OF MACHINING SYSTEM  COHERENCE IN RESEARCH AND APPLICATION PRACTICES -- 3. DEALING WITH SYSTEM ISSUES -- 3.1. Chip Compression Ratio -- 3.1.1. Definition -- 3.1.2. Significance -- 3.2. Péclet number -- 3.2.1. Definition -- 3.2.2. Practical Use in Modeling -- 3.2.3. Practical Use in Testing -- 3.3 Poletica number -- 3.3.1 Definition -- 3.3.2. Practical Use in Modeling and Testing -- 3.4. Some Other Similarity Numbers: A, Silin, D, E Criterion -- 3.5. Machinability Studies Using Similarity Numbers -- REFERENCES -- Chapter 2    PREDICTION OF HEAT PARTITION IN METAL CUTTING − A STATE-OF-THE-ART REVIEW OF CONVENTIONAL TO HIGH-SPEED MACHINING -- ABSTRACT -- NOMENCLATURE -- Greek Symbols -- Subscripts -- 1. INTRODUCTION -- 2. HIGH-SPEED MACHINING (HSM) -- 3. TRIBOLOGICAL TOOL COATINGS -- 4. HEAT GENERATION IN METAL CUTTING PROCESS -- 4.1. Evaluation of Heat Generation in Metal Cutting Processes -- 4.2. Estimation of Non-Uniform Heat Flux Along the Tool-Chip Interface -- 5. A REVIEW OF PREVIOUSLY REPORTED VALUES OF HEAT PARTITION BETWEEN THE TOOL AND THE CHIP -- 6. EXISTING ANALYTICAL MODELS FOR  THE PREDICTION OF HEAT PARTITION -- 6.1. Loewen and Shaw Heat Partition Model -- 6.2. Reznikov Heat Partition Model -- 6.3. Gecim and Winer Heat Partition



Model -- 6.4. Shaw Heat Partition Model -- 6.5. Berliner and Krainov Heat Partition Model -- 6.6. Tian and Kennedy Heat Partition Model -- 6.7. Kato and Fujii Heat Partition Model -- 7. SOME COMMENTS ON THE EXISTING HEAT  PARTITION MODELS AND THEIR LIMITATIONS -- 8. FINITE ELEMENT MODELLING -- 8.1. Thermal Properties of the Workpiece, and Uncoated  and Coated Tool Materials.

9. EXPERIMENTAL TESTS -- 9.1. Experimental Set-Up -- 9.1.1. Machining Conditions -- 9.1.2. Cutting Tool Materials -- 9.1.3. Workpiece Material -- 9.2. Temperature Measurements -- 10. RESULTS AND DISCUSSIONS -- 10.1. Cutting Forces -- 10.2. Tool-Chip Contact Area -- 10.3. Tool-Chip Contact Phenomena -- 10.3.1. Determination of Sticking and Sliding Zones for Uncoated,  and TiN- and TiAlN-Coated Tools -- 10.4. Heat Partition into the Cutting Tool -- 10.4.1. For Uncoated Carbide Cutting Tool -- 10.4.2. For TiN-Coated Tool -- 10.4.3. For TiAlN-Coated Tool -- 11. CONCLUSION -- REFERENCES -- Chapter 3    MECHANICAL AND THERMAL EXPERIMENTS IN CUTTING PROCESS FOR NEW BEHAVIOUR LAW -- ABSTRACT -- 1. INTRODUCTION -- Evolution and Revolution in the Scientific Approach to the Cutting Process -- 2. MOMENTS AT THE TIP OF THE TOOL -- 2.1. Experimental Devices -- 2.2. Examples of Experimental Mechanical Results -- 2.2.1. Turning Mechanical Results -- 2.2.2. Milling Mechanical Results -- 2.3. Analysis of the Mechanical Experimental Results -- 2.3.1. First Part - Energy Considerations -- 2.3.2. Second Part - Mechanical Considerations -- 2.4. Conclusion -- 3. TEMPERATURE MEASUREMENT DEVICE AT THE TIP OF THE TOOL -- 3.1. Examples of Experimental Results -- 3.1.1. Thermal Measurement Results in Turning -- 4. MECHANICAL / THERMAL ENERGY BALANCE -- 5. EXPERIMENTAL CONCLUSIONS -- 6. A THREE-DIMENSIONAL SEMI-ANALYTICAL  THERMO MECHANICAL CUTTING MODEL -- 6.1. Model Description -- 6.2. Thermomechanical Model of the Cutting Process -- 6.2.1. Thermal Transfers in Cutting Zones -- 6.2.2. Behaviour Laws in the Shear Zones -- 6.2.3. Thermal Balance Sheet -- 6.2.4. Analysis -- 7. ANALYSIS AND DISCUSSION ON THE VALIDITY OF THE BEHAVIOUR LAWS USED CLASSICALLY IN CUTTING MODELS -- 7.1. Reproduction of Complex   Contact Tool-Chip Phenomena -- 7.1.1. Experimental Device.

7.1.2. Results of the Friction Forces -- 7.1.3. Results of the Friction Moments -- 7.2. Second Gradient Theory -  New Behaviour Law Forms for the Secondary Shear Zone -- 8. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4    FINITE ELEMENT MODELLING  OF MACHINING ALUMINIUM ALLOY  (AL 7075) AND EXPERIMENTAL VALIDATION -- ABSTRACT -- 1. INTRODUCTION -- 2. FEM ANALYSIS -- 3. METHODOLOGY -- Experimental Procedure -- FEM Machining Input Parameters -- Experimental Validation -- 4. RESULTS AND DISCUSSION -- FEM Analysis Validation with Coulomb Friction Coefficient -- FEM Analysis Validation with Coefficient Friction Adjustment -- Experimental Validation -- Modelling and Prediction -- Cutting and Feed Forces, Cutting Power, and Maximum Cutting Temperature -- Plastic Strain, Plastic Strain Rate, and Maximum Shear Stress -- 5. CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 5    DIAMOND-COATED CUTTING TOOLS  FOR MACHINING APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. DIAMOND-COATED TOOLS - STATE OF THE KNOWLEDGE -- 2.1. Substrate Materials and Geometry -- 2.2. Substrate Surface Treatments -- 2.1.3. CVD Processes -- 2.4. Coating Characterizations -- 2.5. Machining Performance -- 3. RECENT DEVELOPMENTS -- 3.1. Diamond Deposition -- 3.2. Coating Characterizations -- 3.3. Machining Performance -- 3.3.1. NCD vs. MCD and PCD Tools -- 3.3.2. Machining Parameter Effects -- 3.3.3. Cutting Edge Radius Effects -- 3.3.4. Coating



Thickness Effects -- 3.4. Tool Condition Monitoring -- 3.5. Deposition Residual Stress Simulations -- 3.5.1. Cutting Edge Radius Effects -- 3.5.2. Coating Thickness Effects -- 3.5.2. Diamond Coated Twist Drills -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6    GENERATION AND MODELLING OF SURFACE ROUGHNESS IN MACHINING USING GEOMETRICALLY DEFINED CUTTING TOOLS -- ABSTRACT -- 1. INTRODUCTION.

2. SURVEY OF SURFACE ROUGHNESS MODELS -- 2.1. Geometrical/Kinematical Models -- 2.2. Models Considering Minimum Undeformed Chip Thickness -- 2.3. Models Considering Real Tool Rake Configurations -- 2.3. Models Considering Material Side Flow Effect -- 2.4. Models Considering Quality/Preparation of the Cutting Edge= -- 2.5. Models Considering Deterioration/Relative  Displacement of Tool Nose Traces -- 2.5.1. Fundamentals of Profile Decomposition Method -- 2.5.2. Machining Tests and Measurements of Surface Roughness -- 2.5.3. Coefficient of Profile Deformations Versus Process Variables -- 2.5.4. Predictions of Profile Deformations and Surface Roughness Parameters -- 2.5.5. Wavelet Image of Surface Profile Distortions -- 3. SUMMARY -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7    CHATTER MODELING IN DRILLING  AND MICRODRILLING -- ABSTRACT -- 1. INTRODUCTION -- 2. INVESTIGATION OF CHATTER IN DRILLING -- 2.1. Torsional-Axial Model -- 2.2. Bending Model -- 2.3. Combination of the Bending and Torsional-Axial Models -- 2.4. Chatter Suppression -- 3. INVESTIGATION OF CHATTER IN MICRO DRILLING -- 4. CONCLUSIONS -- REFERENCES -- Chapter 8    ASSISTED MACHINING PROCESSES -- ABSTRACT -- 1. INTRODUCTION -- 2. HIGH-PRESSURE ASSISTED PROCESSES -- 2.1. Test Results in Turning of Titanium Alloys -- 2.2. High-Pressure Assisted Milling -- 2.3. High-Pressure Assisted Drilling -- 2.3.1. Test Results in Titanium Alloys -- 2.3.2. Test Results in Stainless Steels -- 3. COLD AND CRYOGENIC MACHINING -- 3.1. Cold Air -- 3.2. CO2 Assisted Machining -- 3.3. Liquid Nitrogen as Coolant -- 4. VIBRATION-ASSISTED MACHINING -- 4.1. Modulation-Assisted Machining -- 4.2. Ultrasonic Assisted Machining -- 4.2.1. Ultrasonic-Assisted Turning -- 4.2.2. Ultrasonic-Assisted Drilling -- 4.2.3. Ultrasonic Elliptical Cutting -- 5. THERMAL-ENHANCED MACHINING -- 5.1. Laser-Assisted Machining.

5.2. Plasma-Assisted Processes -- 5.2.1. Plasma-Assisted Milling Results in Nickel Alloys -- 6. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page.