|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910823268003321 |
|
|
Titolo |
The mathematics of Minkowski space-time : with an introduction to commutative hypercomplex numbers / / Francesco Catoni ... [et al.] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel ; ; Boston, : Birkhauser, c2008 |
|
|
|
|
|
|
|
ISBN |
|
1-281-49123-3 |
9786611491239 |
3-7643-8614-2 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2008.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (271 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Generalized spaces |
Special relativity (Physics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
N-Dimensional Commutative Hypercomplex Numbers -- The Geometries Generated by Hypercomplex Numbers -- Trigonometry in the Minkowski Plane -- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox) -- General Two-Dimensional Hypercomplex Numbers -- Functions of a Hyperbolic Variable -- Hyperbolic Variables on Lorentz Surfaces -- Constant Curvature Lorentz Surfaces -- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle). |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of the "twin paradox" is given, followed by a detailed exposition of space-time geometry and trigonometry. Finally, an appendix on general properties of commutative hypercomplex systems with four unities is presented. |
|
|
|
|
|
|
|