|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910822705303321 |
|
|
Titolo |
Concentration, functional inequalities, and isoperimetry : International Workshop on Concentration, Functional Inequalities, and Isoperimetry, October 29-November 1, 2009, Florida Atlantic University, Boca Raton, Florida / / Christian Houdré [and three others], editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2011] |
|
©2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-8224-4 |
0-8218-7405-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (226 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, ; 545 , 0271-4132 |
|
|
|
|
|
|
Classificazione |
|
26D1032F3246E3046G1253C2053C2160B9960E15 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Isoperimetric inequalities |
Convexity spaces |
Functional analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Contents -- Preface -- COH formula and Dirichlet Laplacians on Small Domains of Pinned Path Spaces -- Maximal Characterization of Hardy–Sobolev Spaces on Manifolds -- On Milman's Ellipsoids and M-Position of Convex Bodies -- Fractional Generalizations of Young and Brunn–Minkowski Inequalities -- Approximately Gaussian Marginals and the Hyperplane Conjecture -- One More Proof of the Erdös-Turán Inequality, and an Error Estimatein Wigner's Law -- Quantitative Isoperimetric Inequalities, with Applications to the Stability of Liquid Drops and Crystals -- Spherical Reflection Positivity and the Hardy-Littlewood-Sobolev Inequality -- On the Existence of Subgaussian Directions for Log-Concave Measures -- On Isoperimetric Sets of Radially Symmetric Measures -- From Concentration to Isoperimetry: Semigroup Proofs -- Sobolev Inequalities, Rearrangements, Isoperimetry and Interpolation Spaces -- Isoperimetric Bounds on Convex Manifolds -- The Log-Convex Density Conjecture. |
|
|
|
|
|
|
|
| |